Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,120 @@
|
|
1 |
-
import spaces
|
2 |
-
import os
|
3 |
-
import tempfile
|
4 |
import gradio as gr
|
5 |
-
|
6 |
import torch
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
hf_token = os.getenv("HF_TKN")
|
14 |
-
|
15 |
-
device_id = 0 if torch.cuda.is_available() else -1
|
16 |
-
|
17 |
-
captioning_pipeline = pipeline(
|
18 |
-
"image-to-text",
|
19 |
-
model="nlpconnect/vit-gpt2-image-captioning",
|
20 |
-
device=device_id
|
21 |
-
)
|
22 |
-
|
23 |
-
pipe = DiffusionPipeline.from_pretrained(
|
24 |
-
"cvssp/audioldm2",
|
25 |
-
use_auth_token=hf_token
|
26 |
)
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
try:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
return caption, False
|
43 |
-
|
44 |
except Exception as e:
|
45 |
-
return
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
try:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
num_inference_steps=50,
|
54 |
-
guidance_scale=7.5
|
55 |
)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
60 |
-
write(temp_wav.name, 16000, audio)
|
61 |
-
return temp_wav.name
|
62 |
-
|
63 |
except Exception as e:
|
64 |
-
|
65 |
-
return None
|
66 |
-
|
67 |
-
css = """
|
68 |
-
#col-container{
|
69 |
-
margin: 0 auto;
|
70 |
-
max-width: 800px;
|
71 |
-
}
|
72 |
-
"""
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
85 |
-
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
|
86 |
-
|
87 |
-
**💡 How it works:**
|
88 |
-
1. **Upload an image**: Choose an image that you'd like to analyze.
|
89 |
-
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
90 |
-
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
91 |
-
sound effect that matches the image context.
|
92 |
-
|
93 |
-
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
94 |
-
""")
|
95 |
-
|
96 |
-
image_upload = gr.File(label="Upload Image", type="binary")
|
97 |
-
generate_description_button = gr.Button("Generate Description")
|
98 |
-
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
99 |
-
generate_sound_button = gr.Button("Generate Sound Effect")
|
100 |
-
audio_output = gr.Audio(label="Generated Sound Effect")
|
101 |
-
|
102 |
-
gr.Markdown("""
|
103 |
-
## 👥 How You Can Contribute
|
104 |
-
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
105 |
-
to the continuous enhancement of this application.
|
106 |
-
|
107 |
-
For support, questions, or to contribute, please contact us at
|
108 |
-
[[email protected]](mailto:[email protected]).
|
109 |
-
|
110 |
-
Support our work and get involved by donating through
|
111 |
-
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
112 |
-
""")
|
113 |
-
|
114 |
-
gr.Markdown("""
|
115 |
-
## 📢 Stay Connected
|
116 |
-
This app is a testament to the creative possibilities that emerge when technology meets art.
|
117 |
-
Enjoy exploring the auditory landscape of your images!
|
118 |
-
""")
|
119 |
-
|
120 |
-
def update_caption(image_file):
|
121 |
-
description, _ = analyze_image_with_free_model(image_file)
|
122 |
-
return description
|
123 |
-
|
124 |
-
def generate_sound(description):
|
125 |
-
if not description or description.startswith("Error"):
|
126 |
-
return None
|
127 |
-
audio_path = get_audioldm_from_caption(description)
|
128 |
-
return audio_path
|
129 |
-
|
130 |
-
generate_description_button.click(
|
131 |
-
fn=update_caption,
|
132 |
-
inputs=image_upload,
|
133 |
-
outputs=caption_display
|
134 |
-
)
|
135 |
-
|
136 |
-
generate_sound_button.click(
|
137 |
-
fn=generate_sound,
|
138 |
-
inputs=caption_display,
|
139 |
-
outputs=audio_output
|
140 |
-
)
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
pipeline,
|
8 |
+
AutoProcessor,
|
9 |
+
MusicgenForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
+
import scipy.io.wavfile as wav
|
12 |
|
13 |
+
# ---------------------------------------------------------------------
|
14 |
+
# Load Llama 3 Model with Zero GPU
|
15 |
+
# ---------------------------------------------------------------------
|
16 |
+
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
17 |
try:
|
18 |
+
if not torch.cuda.is_available():
|
19 |
+
raise RuntimeError("ZeroGPU is not properly initialized or GPU is unavailable.")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_id,
|
23 |
+
use_auth_token=token,
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
device_map="auto", # Use device map to offload computations
|
26 |
+
trust_remote_code=True # Enables execution of remote code for Zero GPU
|
27 |
+
)
|
28 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
|
|
29 |
except Exception as e:
|
30 |
+
return str(e)
|
31 |
|
32 |
+
# ---------------------------------------------------------------------
|
33 |
+
# Generate Radio Script
|
34 |
+
# ---------------------------------------------------------------------
|
35 |
+
def generate_script(user_input: str, pipeline_llama):
|
36 |
try:
|
37 |
+
system_prompt = (
|
38 |
+
"You are a top-tier radio imaging producer using Llama 3. "
|
39 |
+
"Take the user's concept and craft a short, creative promo script."
|
|
|
|
|
40 |
)
|
41 |
+
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
42 |
+
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
43 |
+
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
+
return f"Error generating script: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# ---------------------------------------------------------------------
|
48 |
+
# Load MusicGen Model
|
49 |
+
# ---------------------------------------------------------------------
|
50 |
+
def load_musicgen_model():
|
51 |
+
try:
|
52 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
53 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
54 |
+
return model, processor
|
55 |
+
except Exception as e:
|
56 |
+
return None, str(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# ---------------------------------------------------------------------
|
59 |
+
# Generate Audio
|
60 |
+
# ---------------------------------------------------------------------
|
61 |
+
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
62 |
+
try:
|
63 |
+
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
64 |
+
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
65 |
+
sr = mg_model.config.audio_encoder.sampling_rate
|
66 |
+
audio_data = outputs[0, 0].cpu().numpy()
|
67 |
+
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
68 |
+
output_file = "radio_jingle.wav"
|
69 |
+
wav.write(output_file, rate=sr, data=normalized_audio)
|
70 |
+
return sr, normalized_audio
|
71 |
+
except Exception as e:
|
72 |
+
return str(e)
|
73 |
+
|
74 |
+
# ---------------------------------------------------------------------
|
75 |
+
# Gradio Interface
|
76 |
+
# ---------------------------------------------------------------------
|
77 |
+
def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length):
|
78 |
+
# Load Llama 3 Pipeline with Zero GPU
|
79 |
+
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
|
80 |
+
if isinstance(pipeline_llama, str):
|
81 |
+
return pipeline_llama, None
|
82 |
+
|
83 |
+
# Generate Script
|
84 |
+
script = generate_script(user_prompt, pipeline_llama)
|
85 |
+
|
86 |
+
# Load MusicGen
|
87 |
+
mg_model, mg_processor = load_musicgen_model()
|
88 |
+
if isinstance(mg_processor, str):
|
89 |
+
return script, mg_processor
|
90 |
+
|
91 |
+
# Generate Audio
|
92 |
+
audio_data = generate_audio(script, audio_length, mg_model, mg_processor)
|
93 |
+
if isinstance(audio_data, str):
|
94 |
+
return script, audio_data
|
95 |
+
|
96 |
+
return script, audio_data
|
97 |
+
|
98 |
+
# ---------------------------------------------------------------------
|
99 |
+
# Interface
|
100 |
+
# ---------------------------------------------------------------------
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
|
103 |
+
with gr.Row():
|
104 |
+
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show, fun and energetic.")
|
105 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
|
106 |
+
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
107 |
+
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
108 |
+
|
109 |
+
generate_button = gr.Button("Generate Promo Script and Audio")
|
110 |
+
script_output = gr.Textbox(label="Generated Script")
|
111 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
112 |
+
|
113 |
+
generate_button.click(radio_imaging_app,
|
114 |
+
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
|
115 |
+
outputs=[script_output, audio_output])
|
116 |
+
|
117 |
+
# ---------------------------------------------------------------------
|
118 |
+
# Launch App
|
119 |
+
# ---------------------------------------------------------------------
|
120 |
+
demo.launch()
|