Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import os
|
3 |
import tempfile
|
4 |
import gradio as gr
|
@@ -6,73 +5,96 @@ from dotenv import load_dotenv
|
|
6 |
import torch
|
7 |
from scipy.io.wavfile import write
|
8 |
from diffusers import DiffusionPipeline
|
9 |
-
|
10 |
from pathlib import Path
|
11 |
|
12 |
-
|
13 |
-
# Load environment variables from .env file
|
14 |
load_dotenv()
|
15 |
|
16 |
-
#
|
17 |
-
genai.configure(api_key=os.getenv("API_KEY"))
|
18 |
-
|
19 |
-
# Hugging Face token from environment variables
|
20 |
hf_token = os.getenv("HF_TKN")
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
-
Analyzes an uploaded image
|
|
|
25 |
"""
|
26 |
try:
|
27 |
-
# Save uploaded image to a temporary file
|
28 |
-
|
29 |
-
with open(temp_image_path, "wb") as temp_file:
|
30 |
temp_file.write(image_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Prepare the image data and prompt for Gemini
|
33 |
-
image_parts = [{"mime_type": "image/jpeg", "data": Path(temp_image_path).read_bytes()}]
|
34 |
-
prompt_parts = ["Describe precisely the image in one sentence.\n", image_parts[0], "\n"]
|
35 |
-
generation_config = {"temperature": 0.05, "top_p": 1, "top_k": 26, "max_output_tokens": 4096}
|
36 |
-
safety_settings = [{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
37 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
38 |
-
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
39 |
-
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}]
|
40 |
-
model = genai.GenerativeModel(model_name="gemini-1.0-pro-vision-latest",
|
41 |
-
generation_config=generation_config,
|
42 |
-
safety_settings=safety_settings)
|
43 |
-
response = model.generate_content(prompt_parts)
|
44 |
-
return response.text.strip(), False # False indicates no error
|
45 |
except Exception as e:
|
46 |
-
print(f"Error analyzing image
|
47 |
-
return "Error analyzing image
|
48 |
|
49 |
def get_audioldm_from_caption(caption):
|
50 |
"""
|
51 |
Generates sound from a caption using the AudioLDM-2 model.
|
|
|
52 |
"""
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
#
|
67 |
-
|
|
|
|
|
68 |
#col-container{
|
69 |
margin: 0 auto;
|
70 |
max-width: 800px;
|
71 |
}
|
72 |
-
|
73 |
"""
|
74 |
|
75 |
-
# Gradio interface setup
|
76 |
with gr.Blocks(css=css) as demo:
|
77 |
# Main Title and App Description
|
78 |
with gr.Column(elem_id="col-container"):
|
@@ -81,47 +103,57 @@ with gr.Blocks(css=css) as demo:
|
|
81 |
🎶 Generate Sound Effects from Image
|
82 |
</h1>
|
83 |
<p style="text-align: center;">
|
84 |
-
⚡ Powered by <a href="https://bilsimaging.com" _blank
|
85 |
</p>
|
86 |
-
|
87 |
-
|
88 |
gr.Markdown("""
|
89 |
-
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
|
|
90 |
|
91 |
**💡 How it works:**
|
92 |
1. **Upload an image**: Choose an image that you'd like to analyze.
|
93 |
-
2. **Generate Description**: Click on '
|
94 |
-
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
|
|
95 |
|
96 |
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
97 |
-
|
98 |
-
For Example Demos sound effects generated , check out our [YouTube channel](https://www.youtube.com/playlist?list=PLwEbW4bdYBSC8exiJ9PfzufGND_14f--C)
|
99 |
""")
|
100 |
-
|
101 |
-
# Interface Components
|
102 |
image_upload = gr.File(label="Upload Image", type="binary")
|
103 |
-
generate_description_button = gr.Button("
|
104 |
-
caption_display = gr.Textbox(label="Image Description", interactive=False) # Keep
|
105 |
generate_sound_button = gr.Button("Generate Sound Effect")
|
106 |
audio_output = gr.Audio(label="Generated Sound Effect")
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# Function to update the caption display based on the uploaded image
|
119 |
def update_caption(image_file):
|
120 |
-
description,
|
121 |
return description
|
122 |
|
123 |
# Function to generate sound from the description
|
124 |
def generate_sound(description):
|
|
|
|
|
125 |
audio_path = get_audioldm_from_caption(description)
|
126 |
return audio_path
|
127 |
|
@@ -137,7 +169,4 @@ with gr.Blocks(css=css) as demo:
|
|
137 |
outputs=audio_output
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
# Launch the Gradio app
|
143 |
-
demo.launch(debug=True, share=True)
|
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import gradio as gr
|
|
|
5 |
import torch
|
6 |
from scipy.io.wavfile import write
|
7 |
from diffusers import DiffusionPipeline
|
8 |
+
from transformers import pipeline
|
9 |
from pathlib import Path
|
10 |
|
11 |
+
# Load environment variables from .env file if needed
|
|
|
12 |
load_dotenv()
|
13 |
|
14 |
+
# If you have any Hugging Face tokens for private models (AudioLDM2 requires HF_TKN)
|
|
|
|
|
|
|
15 |
hf_token = os.getenv("HF_TKN")
|
16 |
|
17 |
+
# ------------------------------------------------
|
18 |
+
# 1) INITIALIZE FREE IMAGE CAPTIONING PIPELINE
|
19 |
+
# ------------------------------------------------
|
20 |
+
# Replace "nlpconnect/vit-gpt2-image-captioning" with any other free image captioning model you prefer.
|
21 |
+
captioning_pipeline = pipeline(
|
22 |
+
"image-to-text",
|
23 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
24 |
+
# If the model is private or requires auth, pass the token here: use_auth_token=hf_token,
|
25 |
+
)
|
26 |
+
|
27 |
+
# ------------------------------------------------
|
28 |
+
# 2) INITIALIZE AUDIO LDM-2 PIPELINE
|
29 |
+
# ------------------------------------------------
|
30 |
+
# AudioLDM2 is also from Hugging Face. If it’s a private model, pass your token via use_auth_token.
|
31 |
+
# If you’re using the public version, you may not need the token at all.
|
32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
pipe = DiffusionPipeline.from_pretrained(
|
34 |
+
"cvssp/audioldm2",
|
35 |
+
use_auth_token=hf_token # remove or comment out if not needed
|
36 |
+
)
|
37 |
+
pipe = pipe.to(device)
|
38 |
+
|
39 |
+
def analyze_image_with_free_model(image_file):
|
40 |
"""
|
41 |
+
Analyzes an uploaded image using a free Hugging Face model for image captioning.
|
42 |
+
Returns: (caption_text, is_error_flag)
|
43 |
"""
|
44 |
try:
|
45 |
+
# Save uploaded image to a temporary file
|
46 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
|
|
47 |
temp_file.write(image_file)
|
48 |
+
temp_image_path = temp_file.name
|
49 |
+
|
50 |
+
# Run the image captioning pipeline
|
51 |
+
results = captioning_pipeline(temp_image_path)
|
52 |
+
if not results or not isinstance(results, list):
|
53 |
+
return "Error: Could not generate caption.", True
|
54 |
+
|
55 |
+
# Typically, pipeline returns a list of dicts with a "generated_text" key
|
56 |
+
caption = results[0].get("generated_text", "").strip()
|
57 |
+
if not caption:
|
58 |
+
return "No caption was generated.", True
|
59 |
+
return caption, False
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
+
print(f"Error analyzing image: {e}")
|
63 |
+
return f"Error analyzing image: {e}", True
|
64 |
|
65 |
def get_audioldm_from_caption(caption):
|
66 |
"""
|
67 |
Generates sound from a caption using the AudioLDM-2 model.
|
68 |
+
Returns the filename (path) of the generated .wav file.
|
69 |
"""
|
70 |
+
try:
|
71 |
+
# Generate audio from the caption
|
72 |
+
audio_output = pipe(
|
73 |
+
prompt=caption,
|
74 |
+
num_inference_steps=50,
|
75 |
+
guidance_scale=7.5
|
76 |
+
)
|
77 |
+
audio = audio_output.audios[0]
|
78 |
+
|
79 |
+
# Write the audio to a temporary .wav file
|
80 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
81 |
+
write(temp_wav.name, 16000, audio)
|
82 |
+
return temp_wav.name
|
83 |
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error generating audio from caption: {e}")
|
86 |
+
return None
|
87 |
|
88 |
+
# ------------------------------------------------
|
89 |
+
# 3) GRADIO INTERFACE
|
90 |
+
# ------------------------------------------------
|
91 |
+
css = """
|
92 |
#col-container{
|
93 |
margin: 0 auto;
|
94 |
max-width: 800px;
|
95 |
}
|
|
|
96 |
"""
|
97 |
|
|
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
# Main Title and App Description
|
100 |
with gr.Column(elem_id="col-container"):
|
|
|
103 |
🎶 Generate Sound Effects from Image
|
104 |
</h1>
|
105 |
<p style="text-align: center;">
|
106 |
+
⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
|
107 |
</p>
|
108 |
+
""")
|
109 |
+
|
110 |
gr.Markdown("""
|
111 |
+
Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a
|
112 |
+
descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
|
113 |
|
114 |
**💡 How it works:**
|
115 |
1. **Upload an image**: Choose an image that you'd like to analyze.
|
116 |
+
2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
|
117 |
+
3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a
|
118 |
+
sound effect that matches the image context.
|
119 |
|
120 |
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
|
|
|
|
121 |
""")
|
122 |
+
|
|
|
123 |
image_upload = gr.File(label="Upload Image", type="binary")
|
124 |
+
generate_description_button = gr.Button("Generate Description")
|
125 |
+
caption_display = gr.Textbox(label="Image Description", interactive=False) # Keep read-only
|
126 |
generate_sound_button = gr.Button("Generate Sound Effect")
|
127 |
audio_output = gr.Audio(label="Generated Sound Effect")
|
128 |
+
|
129 |
+
# Extra footer
|
130 |
+
gr.Markdown("""
|
131 |
+
## 👥 How You Can Contribute
|
132 |
+
We welcome contributions and suggestions for improvements. Your feedback is invaluable
|
133 |
+
to the continuous enhancement of this application.
|
134 |
+
|
135 |
+
For support, questions, or to contribute, please contact us at
|
136 |
+
[contact@bilsimaging.com](mailto:[email protected]).
|
137 |
+
|
138 |
+
Support our work and get involved by donating through
|
139 |
+
[Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
|
140 |
+
""")
|
141 |
+
|
142 |
+
gr.Markdown("""
|
143 |
+
## 📢 Stay Connected
|
144 |
+
This app is a testament to the creative possibilities that emerge when technology meets art.
|
145 |
+
Enjoy exploring the auditory landscape of your images!
|
146 |
+
""")
|
147 |
+
|
148 |
# Function to update the caption display based on the uploaded image
|
149 |
def update_caption(image_file):
|
150 |
+
description, error_flag = analyze_image_with_free_model(image_file)
|
151 |
return description
|
152 |
|
153 |
# Function to generate sound from the description
|
154 |
def generate_sound(description):
|
155 |
+
if not description or description.startswith("Error"):
|
156 |
+
return None # or some default sound
|
157 |
audio_path = get_audioldm_from_caption(description)
|
158 |
return audio_path
|
159 |
|
|
|
169 |
outputs=audio_output
|
170 |
)
|
171 |
|
172 |
+
demo.launch(debug=True, share=True)
|
|
|
|
|
|