Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,13 +7,15 @@ import torch
|
|
7 |
from scipy.io.wavfile import write
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
-
from
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
hf_token = os.getenv("HF_TKN")
|
14 |
|
15 |
device_id = 0 if torch.cuda.is_available() else -1
|
16 |
|
|
|
17 |
captioning_pipeline = pipeline(
|
18 |
"image-to-text",
|
19 |
model="nlpconnect/vit-gpt2-image-captioning",
|
@@ -26,120 +28,151 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
26 |
)
|
27 |
|
28 |
@spaces.GPU(duration=120)
|
29 |
-
def
|
30 |
try:
|
31 |
-
|
32 |
-
temp_file.write(image_file)
|
33 |
-
temp_image_path = temp_file.name
|
34 |
-
|
35 |
-
results = captioning_pipeline(temp_image_path)
|
36 |
if not results or not isinstance(results, list):
|
37 |
return "Error: Could not generate caption.", True
|
38 |
|
39 |
caption = results[0].get("generated_text", "").strip()
|
40 |
-
if not caption
|
41 |
-
return "No caption was generated.", True
|
42 |
-
return caption, False
|
43 |
-
|
44 |
except Exception as e:
|
45 |
return f"Error analyzing image: {e}", True
|
46 |
|
47 |
@spaces.GPU(duration=120)
|
48 |
-
def
|
49 |
try:
|
50 |
pipe.to("cuda")
|
51 |
audio_output = pipe(
|
52 |
-
prompt=
|
53 |
num_inference_steps=50,
|
54 |
guidance_scale=7.5
|
55 |
)
|
56 |
pipe.to("cpu")
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return temp_wav.name
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
-
print(f"Error
|
65 |
return None
|
66 |
|
67 |
css = """
|
68 |
-
#col-container{
|
69 |
-
|
70 |
-
|
71 |
-
}
|
72 |
"""
|
73 |
|
74 |
with gr.Blocks(css=css) as demo:
|
75 |
with gr.Column(elem_id="col-container"):
|
76 |
gr.HTML("""
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
""")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
sound effect that matches the image context.
|
92 |
-
|
93 |
-
Enjoy the journey from visual to auditory sensation with just a few clicks!
|
94 |
-
""")
|
95 |
-
|
96 |
-
image_upload = gr.File(label="Upload Image", type="binary")
|
97 |
-
generate_description_button = gr.Button("Generate Description")
|
98 |
-
caption_display = gr.Textbox(label="Image Description", interactive=False)
|
99 |
-
generate_sound_button = gr.Button("Generate Sound Effect")
|
100 |
-
audio_output = gr.Audio(label="Generated Sound Effect")
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
""")
|
113 |
-
|
114 |
-
gr.Markdown("""
|
115 |
-
## 📢 Stay Connected
|
116 |
-
This app is a testament to the creative possibilities that emerge when technology meets art.
|
117 |
-
Enjoy exploring the auditory landscape of your images!
|
118 |
-
""")
|
119 |
-
|
120 |
-
def update_caption(image_file):
|
121 |
-
description, _ = analyze_image_with_free_model(image_file)
|
122 |
-
return description
|
123 |
-
|
124 |
-
def generate_sound(description):
|
125 |
-
if not description or description.startswith("Error"):
|
126 |
-
return None
|
127 |
-
audio_path = get_audioldm_from_caption(description)
|
128 |
-
return audio_path
|
129 |
|
130 |
-
|
131 |
-
|
|
|
132 |
inputs=image_upload,
|
133 |
outputs=caption_display
|
|
|
|
|
|
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
outputs=audio_output
|
140 |
)
|
141 |
-
|
142 |
-
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FGenerate-Sound-Effects-from-Image&countColor=%23263759" /></a>')
|
143 |
-
html = gr.HTML()
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
7 |
from scipy.io.wavfile import write
|
8 |
from diffusers import DiffusionPipeline
|
9 |
from transformers import pipeline
|
10 |
+
from pydub import AudioSegment
|
11 |
+
import numpy as np
|
12 |
|
13 |
load_dotenv()
|
14 |
hf_token = os.getenv("HF_TKN")
|
15 |
|
16 |
device_id = 0 if torch.cuda.is_available() else -1
|
17 |
|
18 |
+
# Initialize models
|
19 |
captioning_pipeline = pipeline(
|
20 |
"image-to-text",
|
21 |
model="nlpconnect/vit-gpt2-image-captioning",
|
|
|
28 |
)
|
29 |
|
30 |
@spaces.GPU(duration=120)
|
31 |
+
def analyze_image(image_file):
|
32 |
try:
|
33 |
+
results = captioning_pipeline(image_file)
|
|
|
|
|
|
|
|
|
34 |
if not results or not isinstance(results, list):
|
35 |
return "Error: Could not generate caption.", True
|
36 |
|
37 |
caption = results[0].get("generated_text", "").strip()
|
38 |
+
return caption if caption else "No caption generated.", not bool(caption)
|
|
|
|
|
|
|
39 |
except Exception as e:
|
40 |
return f"Error analyzing image: {e}", True
|
41 |
|
42 |
@spaces.GPU(duration=120)
|
43 |
+
def generate_audio(prompt):
|
44 |
try:
|
45 |
pipe.to("cuda")
|
46 |
audio_output = pipe(
|
47 |
+
prompt=prompt,
|
48 |
num_inference_steps=50,
|
49 |
guidance_scale=7.5
|
50 |
)
|
51 |
pipe.to("cpu")
|
52 |
+
return audio_output.audios[0]
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error generating audio: {e}")
|
55 |
+
return None
|
|
|
56 |
|
57 |
+
def blend_audios(audio_list):
|
58 |
+
try:
|
59 |
+
# Find the longest audio duration
|
60 |
+
max_length = max([arr.shape[0] for arr in audio_list])
|
61 |
+
|
62 |
+
# Mix all audios
|
63 |
+
mixed = np.zeros(max_length)
|
64 |
+
for arr in audio_list:
|
65 |
+
if arr.shape[0] < max_length:
|
66 |
+
padded = np.pad(arr, (0, max_length - arr.shape[0]))
|
67 |
+
else:
|
68 |
+
padded = arr[:max_length]
|
69 |
+
mixed += padded
|
70 |
+
|
71 |
+
# Normalize the audio
|
72 |
+
mixed = mixed / np.max(np.abs(mixed))
|
73 |
+
|
74 |
+
# Save to temporary file
|
75 |
+
_, tmp_path = tempfile.mkstemp(suffix=".wav")
|
76 |
+
write(tmp_path, 16000, mixed)
|
77 |
+
return tmp_path
|
78 |
except Exception as e:
|
79 |
+
print(f"Error blending audio: {e}")
|
80 |
return None
|
81 |
|
82 |
css = """
|
83 |
+
#col-container { max-width: 800px; margin: 0 auto; }
|
84 |
+
.toggle-row { margin: 1rem 0; }
|
85 |
+
.prompt-box { margin-bottom: 0.5rem; }
|
|
|
86 |
"""
|
87 |
|
88 |
with gr.Blocks(css=css) as demo:
|
89 |
with gr.Column(elem_id="col-container"):
|
90 |
gr.HTML("""
|
91 |
+
<h1 style="text-align: center;">🎶 Advanced Sound Generator</h1>
|
92 |
+
<p style="text-align: center;">⚡ Powered by Bilsimaging</p>
|
93 |
+
""")
|
94 |
+
|
95 |
+
# Input mode toggle
|
96 |
+
input_mode = gr.Radio(
|
97 |
+
choices=["Image Input", "Text Prompts"],
|
98 |
+
value="Image Input",
|
99 |
+
label="Select Input Mode",
|
100 |
+
elem_classes="toggle-row"
|
101 |
+
)
|
102 |
+
|
103 |
+
# Image input section
|
104 |
+
with gr.Column(visible=True) as image_col:
|
105 |
+
image_upload = gr.Image(type="filepath", label="Upload Image")
|
106 |
+
generate_desc_btn = gr.Button("Generate Description from Image")
|
107 |
+
caption_display = gr.Textbox(label="Generated Description", interactive=False)
|
108 |
+
|
109 |
+
# Text input section
|
110 |
+
with gr.Column(visible=False) as text_col:
|
111 |
+
with gr.Row():
|
112 |
+
prompt1 = gr.Textbox(label="Sound Prompt 1", lines=2)
|
113 |
+
prompt2 = gr.Textbox(label="Sound Prompt 2", lines=2)
|
114 |
+
additional_prompts = gr.Column()
|
115 |
+
add_prompt_btn = gr.Button("➕ Add Another Prompt", variant="secondary")
|
116 |
+
generate_sound_btn = gr.Button("Generate Blended Sound", variant="primary")
|
117 |
+
|
118 |
+
# Audio output
|
119 |
+
audio_output = gr.Audio(label="Final Sound Composition", interactive=False)
|
120 |
+
|
121 |
+
# Documentation section
|
122 |
+
gr.Markdown("""
|
123 |
+
## 🎚️ How to Use
|
124 |
+
1. **Choose Input Mode** above
|
125 |
+
2. For images: Upload + Generate Description → Generate Sound
|
126 |
+
3. For text: Enter multiple sound prompts → Generate Blended Sound
|
127 |
+
[Support on Ko-fi](https://ko-fi.com/bilsimaging)
|
128 |
""")
|
129 |
|
130 |
+
# Visitor badge
|
131 |
+
gr.HTML("""
|
132 |
+
<div style="text-align: center; margin-top: 2rem;">
|
133 |
+
<a href="https://visitorbadge.io/status?path=YOUR_SPACE_URL">
|
134 |
+
<img src="https://api.visitorbadge.io/api/visitors?path=YOUR_SPACE_URL&countColor=%23263759"/>
|
135 |
+
</a>
|
136 |
+
</div>
|
137 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# Toggle visibility based on input mode
|
140 |
+
def toggle_input(mode):
|
141 |
+
if mode == "Image Input":
|
142 |
+
return [gr.update(visible=True), gr.update(visible=False)]
|
143 |
+
return [gr.update(visible=False), gr.update(visible=True)]
|
144 |
|
145 |
+
input_mode.change(
|
146 |
+
fn=toggle_input,
|
147 |
+
inputs=input_mode,
|
148 |
+
outputs=[image_col, text_col]
|
149 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
# Image processing chain
|
152 |
+
generate_desc_btn.click(
|
153 |
+
fn=analyze_image,
|
154 |
inputs=image_upload,
|
155 |
outputs=caption_display
|
156 |
+
).then(
|
157 |
+
fn=lambda: gr.update(interactive=True),
|
158 |
+
outputs=generate_sound_btn
|
159 |
)
|
160 |
|
161 |
+
# Text processing chain
|
162 |
+
generate_sound_btn.click(
|
163 |
+
fn=lambda *prompts: [p for p in prompts if p.strip()],
|
164 |
+
inputs=[prompt1, prompt2],
|
165 |
+
outputs=[]
|
166 |
+
).then(
|
167 |
+
fn=lambda prompts: [generate_audio(p) for p in prompts],
|
168 |
+
outputs=[]
|
169 |
+
).then(
|
170 |
+
fn=blend_audios,
|
171 |
outputs=audio_output
|
172 |
)
|
|
|
|
|
|
|
173 |
|
174 |
+
# Queue management
|
175 |
+
demo.queue(concurrency_count=2)
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
demo.launch()
|