Commit
·
5478d4e
0
Parent(s):
Restore HF Space backend
Browse files- .gitignore +2 -0
- Dockerfile +72 -0
- README.md +12 -0
- app.py +447 -0
- download_models.py +24 -0
- entrypoint.sh +3 -0
- icon.png +0 -0
- model/donothing.txt +1 -0
- requirements.txt +28 -0
- setup.py +28 -0
- sprite.png +0 -0
- uploads/donothing.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
bot.py
|
2 |
+
bin
|
Dockerfile
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
# Set working directory inside the container
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Reduce Docker image size by cleaning up unused files
|
7 |
+
RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* ~/.cache/
|
8 |
+
|
9 |
+
# Install system dependencies
|
10 |
+
RUN apt-get update && apt-get install -y \
|
11 |
+
libgl1-mesa-glx libglib2.0-0 fontconfig \
|
12 |
+
git wget ffmpeg && \
|
13 |
+
rm -rf /var/lib/apt/lists/*
|
14 |
+
|
15 |
+
# Copy entrypoint script and make it executable
|
16 |
+
COPY entrypoint.sh /entrypoint.sh
|
17 |
+
RUN chmod +x /entrypoint.sh
|
18 |
+
|
19 |
+
# Create non-root user
|
20 |
+
RUN useradd -m -u 1000 user
|
21 |
+
USER root
|
22 |
+
ENV HOME=/home/user
|
23 |
+
|
24 |
+
# Install Python dependencies
|
25 |
+
COPY requirements.txt ./
|
26 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
27 |
+
|
28 |
+
# Install Hugging Face CLI + required ML dependencies (hf_hub is at 0.14.1 and may cause a crash)
|
29 |
+
RUN pip install --no-cache-dir "huggingface_hub>=0.16.0,<0.21.0" --extra-index-url "https://download.pytorch.org/whl/cpu"
|
30 |
+
|
31 |
+
# Install LoveDA repository dependencies (last line ignore error flag on)
|
32 |
+
RUN git clone https://github.com/Junjue-Wang/LoveDA.git /home/user/LoveDA
|
33 |
+
WORKDIR /home/user/LoveDA
|
34 |
+
RUN pip install --no-cache-dir -r requirements.txt || true
|
35 |
+
|
36 |
+
# Return to working dir
|
37 |
+
WORKDIR $HOME/app
|
38 |
+
|
39 |
+
# Ensure Hugging Face CLI is accessible
|
40 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
41 |
+
|
42 |
+
# Create model/cache folders
|
43 |
+
RUN mkdir -p /home/user/app/model /home/user/app/cache/uploads && \
|
44 |
+
chown -R user:user /home/user/app && chmod -R 777 /home/user/app
|
45 |
+
|
46 |
+
# Switch back to non-root user
|
47 |
+
USER user
|
48 |
+
WORKDIR $HOME/app
|
49 |
+
|
50 |
+
# Copy application source code
|
51 |
+
COPY --chown=user . $HOME/app
|
52 |
+
|
53 |
+
# Pre-download all Hugging Face models
|
54 |
+
RUN python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='facebook/detr-resnet-50', local_dir='/home/user/app/model/detr', local_dir_use_symlinks=False)"
|
55 |
+
RUN wget -O $HOME/app/model/garbage_detector.pt https://huggingface.co/BinKhoaLe1812/Garbage_Detection/resolve/main/garbage_detector.pt
|
56 |
+
RUN wget -O $HOME/app/model/yolov5-detect-trash-classification.pt https://huggingface.co/turhancan97/yolov5-detect-trash-classification/resolve/main/yolov5s.pt
|
57 |
+
|
58 |
+
# Verify model setup
|
59 |
+
RUN python setup.py
|
60 |
+
|
61 |
+
# Clean outputs folder
|
62 |
+
RUN rm -rf /home/user/app/outputs/*.mp4
|
63 |
+
|
64 |
+
# Copy static images
|
65 |
+
COPY sprite.png /home/user/app/sprite.png
|
66 |
+
COPY icon.png /home/user/app/icon.png
|
67 |
+
|
68 |
+
# Expose FastAPI port
|
69 |
+
EXPOSE 7860
|
70 |
+
|
71 |
+
# Start app
|
72 |
+
ENTRYPOINT ["/entrypoint.sh"]
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: 'Sall-e Garbage Detection'
|
3 |
+
emoji: ♻️
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: apache-2.0
|
9 |
+
short_description: 'Incorporating multi-modal garbage detection images'
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui
|
2 |
+
|
3 |
+
# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
|
4 |
+
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
|
5 |
+
# semantic segmentation (Water / Garbage) ▸ A* + KNN navigation ▸ H.264 video
|
6 |
+
# =======================================================================
|
7 |
+
|
8 |
+
import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import uvicorn
|
11 |
+
from fastapi import FastAPI, File, UploadFile, Request
|
12 |
+
from fastapi.responses import HTMLResponse, StreamingResponse, Response
|
13 |
+
from fastapi.staticfiles import StaticFiles
|
14 |
+
|
15 |
+
# ── Vision libs ─────────────────────────────────────────────────────────
|
16 |
+
import torch, yolov5, ffmpeg
|
17 |
+
from ultralytics import YOLO
|
18 |
+
from transformers import (
|
19 |
+
DetrImageProcessor, DetrForObjectDetection,
|
20 |
+
SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
21 |
+
)
|
22 |
+
from sklearn.neighbors import NearestNeighbors
|
23 |
+
|
24 |
+
# ── Folders / files ─────────────────────────────────────────────────────
|
25 |
+
BASE = "/home/user/app"
|
26 |
+
CACHE = f"{BASE}/cache"
|
27 |
+
UPLOAD_DIR = f"{CACHE}/uploads"
|
28 |
+
OUTPUT_DIR = f"{BASE}/outputs"
|
29 |
+
MODEL_DIR = f"{BASE}/model"
|
30 |
+
SPRITE = f"{BASE}/sprite.png"
|
31 |
+
|
32 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
33 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
34 |
+
os.makedirs(CACHE , exist_ok=True)
|
35 |
+
os.environ["TRANSFORMERS_CACHE"] = CACHE
|
36 |
+
os.environ["HF_HOME"] = CACHE
|
37 |
+
|
38 |
+
# ── Load models once ───────────────────────────────────────────────────
|
39 |
+
print("🔄 Loading models …")
|
40 |
+
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
|
41 |
+
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
|
42 |
+
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
|
43 |
+
model_detr = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
|
44 |
+
feat_extractor = SegformerFeatureExtractor.from_pretrained(
|
45 |
+
"nvidia/segformer-b4-finetuned-ade-512-512")
|
46 |
+
segformer = SegformerForSemanticSegmentation.from_pretrained(
|
47 |
+
"nvidia/segformer-b4-finetuned-ade-512-512")
|
48 |
+
print("✅ Models ready\n")
|
49 |
+
|
50 |
+
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
|
51 |
+
# ADE20K palette
|
52 |
+
ade_palette = np.array([
|
53 |
+
[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
54 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
|
55 |
+
[4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
|
56 |
+
[8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
|
57 |
+
[204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
58 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92],
|
59 |
+
[112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
|
60 |
+
[255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
|
61 |
+
[255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
62 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
|
63 |
+
[250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
|
64 |
+
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
|
65 |
+
[31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
66 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
|
67 |
+
[194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
|
68 |
+
[0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0],
|
69 |
+
[255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
70 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
|
71 |
+
[0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
|
72 |
+
[0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
|
73 |
+
[255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
74 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
|
75 |
+
[0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
|
76 |
+
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
|
77 |
+
[255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
78 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
|
79 |
+
[214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
|
80 |
+
[0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
|
81 |
+
[0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
82 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
|
83 |
+
[92, 0, 255]
|
84 |
+
], dtype=np.uint8)
|
85 |
+
|
86 |
+
custom_class_map = {
|
87 |
+
"Garbage": [(150, 5, 61)],
|
88 |
+
"Water": [(0, 102, 200), (11, 102, 255), (31, 0, 255)],
|
89 |
+
"Grass / Vegetation": [(10, 255, 71), (143, 255, 140)],
|
90 |
+
"Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
|
91 |
+
"Sand / Soil / Ground": [(80, 50, 50), (230, 230, 230)],
|
92 |
+
"Buildings / Structures": [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
|
93 |
+
"Sky / Background": [(180, 120, 120)],
|
94 |
+
"Undetecable": [(0, 0, 0)],
|
95 |
+
"Unknown Class": []
|
96 |
+
}
|
97 |
+
TOL = 30 # RGB tolerance
|
98 |
+
|
99 |
+
# Masking zones (Garbage and Water zone to be travelable)
|
100 |
+
def build_masks(seg):
|
101 |
+
"""
|
102 |
+
Returns three binary masks at (H,W):
|
103 |
+
water_mask – 1 = water
|
104 |
+
garbage_mask – 1 = semantic “Garbage” pixels
|
105 |
+
movable_mask – union of water & garbage (robot can travel here)
|
106 |
+
"""
|
107 |
+
decoded = ade_palette[seg]
|
108 |
+
water_mask = np.zeros(seg.shape, np.uint8)
|
109 |
+
garbage_mask = np.zeros_like(water_mask)
|
110 |
+
# Append water pixels to water_mask
|
111 |
+
for rgb in custom_class_map["Water"]:
|
112 |
+
water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
|
113 |
+
# Append gb pixels to garbage_mask
|
114 |
+
for rgb in custom_class_map["Garbage"]:
|
115 |
+
garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
|
116 |
+
movable_mask = water_mask | garbage_mask
|
117 |
+
return water_mask, garbage_mask, movable_mask
|
118 |
+
|
119 |
+
# ── A* and KNN over binary water grid ─────────────────────────────────
|
120 |
+
def astar(start, goal, occ):
|
121 |
+
h = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
|
122 |
+
N8 = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
|
123 |
+
openq=[(0,start)]; g={start:0}; came={}
|
124 |
+
while openq:
|
125 |
+
_,cur=heapq.heappop(openq)
|
126 |
+
if cur==goal:
|
127 |
+
p=[cur]; # reconstruct
|
128 |
+
while cur in came: cur=came[cur]; p.append(cur)
|
129 |
+
return p[::-1]
|
130 |
+
for dx,dy in N8:
|
131 |
+
nx,ny=cur[0]+dx,cur[1]+dy
|
132 |
+
if not (0<=nx<640 and 0<=ny<640): continue
|
133 |
+
if occ[ny,nx]==0: continue
|
134 |
+
ng=g[cur]+1
|
135 |
+
if (nx,ny) not in g or ng<g[(nx,ny)]:
|
136 |
+
g[(nx,ny)]=ng
|
137 |
+
f=ng+h((nx,ny),goal)
|
138 |
+
heapq.heappush(openq,(f,(nx,ny)))
|
139 |
+
came[(nx,ny)]=cur
|
140 |
+
return []
|
141 |
+
|
142 |
+
# KNN fit
|
143 |
+
def knn_path(start, targets, occ):
|
144 |
+
todo = targets[:]; path=[]
|
145 |
+
cur = tuple(start)
|
146 |
+
while todo:
|
147 |
+
nbrs = NearestNeighbors(n_neighbors=1).fit(todo)
|
148 |
+
_,idx = nbrs.kneighbors([cur]); nxt=tuple(todo[idx[0][0]])
|
149 |
+
seg = astar(cur, nxt, occ)
|
150 |
+
if seg:
|
151 |
+
if path and seg[0]==path[-1]: seg=seg[1:]
|
152 |
+
path.extend(seg)
|
153 |
+
cur = nxt; todo.remove(list(nxt))
|
154 |
+
return path
|
155 |
+
|
156 |
+
# ── Robot sprite/class -──────────────────────────────────────────────────
|
157 |
+
class Robot:
|
158 |
+
def __init__(self, sprite, speed=200): # Declare the robot's physical stats and routing (position, speed, movement, path)
|
159 |
+
self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
|
160 |
+
self.pos = [0,0]; self.speed=speed
|
161 |
+
def step(self, path):
|
162 |
+
if not path: return
|
163 |
+
dx,dy = path[0][0]-self.pos[0], path[0][1]-self.pos[1]
|
164 |
+
dist = (dx*dx+dy*dy)**0.5
|
165 |
+
if dist<=self.speed:
|
166 |
+
self.pos=list(path.pop(0)); return
|
167 |
+
r=self.speed/dist; self.pos=[int(self.pos[0]+dx*r), int(self.pos[1]+dy*r)]
|
168 |
+
|
169 |
+
# ── FastAPI & HTML content (original styling) ───────────────────────────
|
170 |
+
# HTML Content for UI (streamed with FastAPI HTML renderer)
|
171 |
+
HTML_CONTENT = """
|
172 |
+
<!DOCTYPE html>
|
173 |
+
<html>
|
174 |
+
<head>
|
175 |
+
<title>Sall-e Garbage Detection</title>
|
176 |
+
<link rel="website icon" type="png" href="/static/icon.png" >
|
177 |
+
<style>
|
178 |
+
body {
|
179 |
+
font-family: 'Roboto', sans-serif; background: linear-gradient(270deg, rgb(44, 13, 58), rgb(13, 58, 56)); color: white; text-align: center; margin: 0; padding: 50px;
|
180 |
+
}
|
181 |
+
h1 {
|
182 |
+
font-size: 40px;
|
183 |
+
background: linear-gradient(to right, #f32170, #ff6b08, #cf23cf, #eedd44);
|
184 |
+
-webkit-text-fill-color: transparent;
|
185 |
+
-webkit-background-clip: text;
|
186 |
+
font-weight: bold;
|
187 |
+
}
|
188 |
+
#upload-container {
|
189 |
+
background: rgba(255, 255, 255, 0.2); padding: 20px; width: 70%; border-radius: 10px; display: inline-block; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
|
190 |
+
}
|
191 |
+
#upload {
|
192 |
+
font-size: 18px; padding: 10px; border-radius: 5px; border: none; background: #fff; cursor: pointer;
|
193 |
+
}
|
194 |
+
#loader {
|
195 |
+
margin-top: 10px; margin-left: auto; margin-right: auto; width: 60px; height: 60px; font-size: 12px; text-align: center;
|
196 |
+
}
|
197 |
+
p {
|
198 |
+
margin-top: 10px; font-size: 12px; color: #3498db;
|
199 |
+
}
|
200 |
+
#spinner {
|
201 |
+
border: 8px solid #f3f3f3; border-top: 8px solid rgb(117 7 7); border-radius: 50%; animation: spin 1s linear infinite; width: 40px; height: 40px; margin: auto;
|
202 |
+
}
|
203 |
+
@keyframes spin {
|
204 |
+
0% { transform: rotate(0deg); }
|
205 |
+
100% { transform: rotate(360deg); }
|
206 |
+
}
|
207 |
+
#outputVideo {
|
208 |
+
margin-top: 20px; width: 70%; margin-left: auto; margin-right: auto; max-width: 640px; border-radius: 10px; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
|
209 |
+
}
|
210 |
+
#downloadBtn {
|
211 |
+
display: block; visibility: hidden; width: 20%; margin-top: 20px; margin-left: auto; margin-right: auto; padding: 10px 15px; font-size: 16px; background: #27ae60; color: white; border: none; border-radius: 5px; cursor: pointer; text-decoration: none;
|
212 |
+
}
|
213 |
+
#downloadBtn:hover {
|
214 |
+
background: #950606;
|
215 |
+
}
|
216 |
+
.hidden {
|
217 |
+
display: none;
|
218 |
+
}
|
219 |
+
@media (max-width: 860px) {
|
220 |
+
h1 { font-size: 30px; }
|
221 |
+
}
|
222 |
+
@media (max-width: 720px) {
|
223 |
+
h1 { font-size: 25px; }
|
224 |
+
#upload { font-size: 15px; }
|
225 |
+
#downloadBtn { font-size: 13px; }
|
226 |
+
}
|
227 |
+
@media (max-width: 580px) {
|
228 |
+
h1 { font-size: 20px; }
|
229 |
+
#upload { font-size: 10px; }
|
230 |
+
#downloadBtn { font-size: 10px; }
|
231 |
+
}
|
232 |
+
@media (max-width: 580px) {
|
233 |
+
h1 { font-size: 10px; }
|
234 |
+
}
|
235 |
+
@media (max-width: 460px) {
|
236 |
+
#upload { font-size: 7px; }
|
237 |
+
}
|
238 |
+
@media (max-width: 400px) {
|
239 |
+
h1 { font-size: 14px; }
|
240 |
+
}
|
241 |
+
@media (max-width: 370px) {
|
242 |
+
h1 { font-size: 11px; }
|
243 |
+
#upload { font-size: 5px; }
|
244 |
+
#downloadBtn { font-size: 7px; }
|
245 |
+
}
|
246 |
+
@media (max-width: 330px) {
|
247 |
+
h1 { font-size: 8px; }
|
248 |
+
#upload { font-size: 3px; }
|
249 |
+
#downloadBtn { font-size: 5px; }
|
250 |
+
}
|
251 |
+
</style>
|
252 |
+
</head>
|
253 |
+
<body>
|
254 |
+
<h1>Upload an Image for Garbage Detection</h1>
|
255 |
+
<div id="upload-container">
|
256 |
+
<input type="file" id="upload" accept="image/*">
|
257 |
+
</div>
|
258 |
+
<div id="loader" class="loader hidden">
|
259 |
+
<div id="spinner"></div>
|
260 |
+
<!-- <p>Garbage detection model processing...</p> -->
|
261 |
+
</div>
|
262 |
+
<video id="outputVideo" class="outputVideo" controls></video>
|
263 |
+
<a id="downloadBtn" class="downloadBtn">Download Video</a>
|
264 |
+
<script>
|
265 |
+
document.addEventListener("DOMContentLoaded", function() {
|
266 |
+
document.getElementById("outputVideo").classList.add("hidden");
|
267 |
+
document.getElementById("downloadBtn").style.visibility = "hidden";
|
268 |
+
});
|
269 |
+
document.getElementById('upload').addEventListener('change', async function(event) {
|
270 |
+
event.preventDefault();
|
271 |
+
const loader = document.getElementById("loader");
|
272 |
+
const outputVideo = document.getElementById("outputVideo");
|
273 |
+
const downloadBtn = document.getElementById("downloadBtn");
|
274 |
+
let file = event.target.files[0];
|
275 |
+
if (file) {
|
276 |
+
let formData = new FormData();
|
277 |
+
formData.append("file", file);
|
278 |
+
loader.classList.remove("hidden");
|
279 |
+
outputVideo.classList.add("hidden");
|
280 |
+
document.getElementById("downloadBtn").style.visibility = "hidden";
|
281 |
+
let response = await fetch('/upload/', { method: 'POST', body: formData });
|
282 |
+
let result = await response.json();
|
283 |
+
let user_id = result.user_id;
|
284 |
+
while (true) {
|
285 |
+
let checkResponse = await fetch(`/check_video/${user_id}`);
|
286 |
+
let checkResult = await checkResponse.json();
|
287 |
+
if (checkResult.ready) break;
|
288 |
+
await new Promise(resolve => setTimeout(resolve, 3000)); // Wait 3s before checking again
|
289 |
+
}
|
290 |
+
loader.classList.add("hidden");
|
291 |
+
let videoUrl = `/video/${user_id}?t=${new Date().getTime()}`;
|
292 |
+
outputVideo.src = videoUrl;
|
293 |
+
outputVideo.load();
|
294 |
+
outputVideo.play();
|
295 |
+
outputVideo.setAttribute("crossOrigin", "anonymous");
|
296 |
+
outputVideo.classList.remove("hidden");
|
297 |
+
downloadBtn.href = videoUrl;
|
298 |
+
document.getElementById("downloadBtn").style.visibility = "visible";
|
299 |
+
}
|
300 |
+
});
|
301 |
+
document.getElementById('outputVideo').addEventListener('error', function() {
|
302 |
+
console.log("⚠️ Video could not be played, showing download button instead.");
|
303 |
+
document.getElementById('outputVideo').classList.add("hidden");
|
304 |
+
document.getElementById("downloadBtn").style.visibility = "visible";
|
305 |
+
});
|
306 |
+
</script>
|
307 |
+
</body>
|
308 |
+
</html>
|
309 |
+
"""
|
310 |
+
|
311 |
+
# ── Static-web ────────────────────────────��─────────────────────────────
|
312 |
+
app = FastAPI()
|
313 |
+
app.mount("/static", StaticFiles(directory=BASE), name="static")
|
314 |
+
video_ready={}
|
315 |
+
@app.get("/ui", response_class=HTMLResponse)
|
316 |
+
def ui(): return HTML_CONTENT
|
317 |
+
def _uid(): return uuid.uuid4().hex[:8]
|
318 |
+
|
319 |
+
# ── End-points ──────────────────────────────────────────────────────────
|
320 |
+
# User upload environment img here
|
321 |
+
@app.post("/upload/")
|
322 |
+
async def upload(file:UploadFile=File(...)):
|
323 |
+
uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
|
324 |
+
with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
|
325 |
+
threading.Thread(target=_pipeline, args=(uid,dest)).start()
|
326 |
+
return {"user_id":uid}
|
327 |
+
|
328 |
+
# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
|
329 |
+
@app.get("/check_video/{uid}")
|
330 |
+
def chk(uid:str): return {"ready":video_ready.get(uid,False)}
|
331 |
+
|
332 |
+
# Where the final video being saved
|
333 |
+
@app.get("/video/{uid}")
|
334 |
+
def stream(uid:str):
|
335 |
+
vid=f"{OUTPUT_DIR}/{uid}.mp4"
|
336 |
+
if not os.path.exists(vid): return Response(status_code=404)
|
337 |
+
return StreamingResponse(open(vid,"rb"), media_type="video/mp4")
|
338 |
+
|
339 |
+
# ── Core pipeline (runs in background thread) ───────────────────────────
|
340 |
+
def _pipeline(uid,img_path):
|
341 |
+
print(f"▶️ [{uid}] processing")
|
342 |
+
bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
|
343 |
+
pil=Image.fromarray(rgb)
|
344 |
+
|
345 |
+
# 1- Segmentation → masking each segmented zone with pytorch
|
346 |
+
with torch.no_grad():
|
347 |
+
inputs = feat_extractor(pil, return_tensors="pt")
|
348 |
+
seg_logits = segformer(**inputs).logits
|
349 |
+
# Tensor run by CPU
|
350 |
+
seg_tensor = seg_logits.argmax(1)[0].cpu()
|
351 |
+
if seg_tensor.numel() == 0:
|
352 |
+
print(f"❌ [{uid}] segmentation failed (empty tensor)")
|
353 |
+
video_ready[uid] = True
|
354 |
+
return
|
355 |
+
# Resize the tensor to 640x640
|
356 |
+
seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
|
357 |
+
print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
|
358 |
+
water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks
|
359 |
+
|
360 |
+
# 2- Garbage detection (3 models) → keep centres on water
|
361 |
+
detections=[]
|
362 |
+
# Detect garbage chunks (from segmentation)
|
363 |
+
num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
|
364 |
+
chunk_centres = []
|
365 |
+
for lab in range(1, num_cc):
|
366 |
+
ys, xs = np.where(labels == lab)
|
367 |
+
if xs.size == 0: # safety
|
368 |
+
continue
|
369 |
+
chunk_centres.append([int(xs.mean()), int(ys.mean())])
|
370 |
+
print(f"🧠 {len(chunk_centres)} garbage chunk detected")
|
371 |
+
# Detect garbage object by within travelable zones
|
372 |
+
for r in model_self(bgr): # YOLOv11 (self-trained)
|
373 |
+
detections += [b.xyxy[0].tolist() for b in r.boxes]
|
374 |
+
for r in model_yolo5(bgr): # YOLOv5
|
375 |
+
if hasattr(r, 'pred') and len(r.pred) > 0:
|
376 |
+
detections += [p[:4].tolist() for p in r.pred[0]]
|
377 |
+
inp=processor_detr(images=pil,return_tensors="pt")
|
378 |
+
with torch.no_grad(): out=model_detr(**inp) # DETR
|
379 |
+
post = processor_detr.post_process_object_detection(
|
380 |
+
outputs=out,
|
381 |
+
target_sizes=torch.tensor([pil.size[::-1]]),
|
382 |
+
threshold=0.5
|
383 |
+
)[0]
|
384 |
+
detections += [b.tolist() for b in post["boxes"]]
|
385 |
+
# centre & mask filter (the garbage lies within travelable zone are collectable)
|
386 |
+
centres = []
|
387 |
+
for x1, y1, x2, y2 in detections: # Define IoU heuristic
|
388 |
+
'''
|
389 |
+
We conduct a 30% allowance whether the center
|
390 |
+
of the detected garbage's bbox lies within the travelable zone
|
391 |
+
which was segmented earlier to be the water and garbage zone
|
392 |
+
'''
|
393 |
+
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
|
394 |
+
x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
|
395 |
+
x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
|
396 |
+
box_mask = movable_mask[y1:y2, x1:x2] # ← use MOVABLE mask
|
397 |
+
if box_mask.size == 0:
|
398 |
+
continue
|
399 |
+
if np.count_nonzero(box_mask) / box_mask.size >= 0.3:
|
400 |
+
centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
|
401 |
+
# add chunk centres and deduplicate
|
402 |
+
centres.extend(chunk_centres)
|
403 |
+
centres = [list(c) for c in {tuple(c) for c in centres}]
|
404 |
+
if not centres: # No garbages within travelable zone
|
405 |
+
print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
|
406 |
+
else: # Garbage within valid travelable zone
|
407 |
+
print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")
|
408 |
+
|
409 |
+
# 3- Global route
|
410 |
+
robot = Robot(SPRITE)
|
411 |
+
path = knn_path(robot.pos, centres, movable_mask)
|
412 |
+
|
413 |
+
# 4- Video synthesis
|
414 |
+
out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
|
415 |
+
vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
|
416 |
+
objs=[{"pos":p,"col":False} for p in centres]
|
417 |
+
bg = bgr.copy()
|
418 |
+
for _ in range(15000): # safety frames
|
419 |
+
frame=bg.copy()
|
420 |
+
# draw garbage
|
421 |
+
for o in objs:
|
422 |
+
color=(0,0,255) if not o["col"] else (0,255,0)
|
423 |
+
x,y=o["pos"]; cv2.circle(frame,(x,y),6,color,-1)
|
424 |
+
# robot
|
425 |
+
robot.step(path)
|
426 |
+
rx,ry=robot.pos; sp=robot.png
|
427 |
+
a=sp[:,:,3]/255.; bgroi=frame[ry:ry+40,rx:rx+40]
|
428 |
+
for c in range(3): bgroi[:,:,c]=a*sp[:,:,c]+(1-a)*bgroi[:,:,c]
|
429 |
+
frame[ry:ry+40,rx:rx+40]=bgroi
|
430 |
+
# collection check
|
431 |
+
for o in objs:
|
432 |
+
if not o["col"] and np.hypot(o["pos"][0]-rx,o["pos"][1]-ry)<=20:
|
433 |
+
o["col"]=True
|
434 |
+
vw.write(frame)
|
435 |
+
if all(o["col"] for o in objs): break
|
436 |
+
if not path: break
|
437 |
+
vw.release()
|
438 |
+
|
439 |
+
# 5- Convert to H.264
|
440 |
+
final=f"{OUTPUT_DIR}/{uid}.mp4"
|
441 |
+
ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
|
442 |
+
os.remove(out_tmp); video_ready[uid]=True
|
443 |
+
print(f"✅ [{uid}] video ready → {final}")
|
444 |
+
|
445 |
+
# ── Run locally (HF Space ignores since built with Docker image) ────────
|
446 |
+
if __name__=="__main__":
|
447 |
+
uvicorn.run(app,host="0.0.0.0",port=7860)
|
download_models.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
# Define model download directory
|
6 |
+
model_dir = "/home/user/app/model"
|
7 |
+
cache_dir = "/home/user/app/cache"
|
8 |
+
|
9 |
+
max_cache_size = 500 * 1024 * 1024 # 500MB
|
10 |
+
|
11 |
+
# Ensure the directory exists
|
12 |
+
os.makedirs(model_dir, exist_ok=True)
|
13 |
+
os.makedirs(cache_dir, exist_ok=True)
|
14 |
+
|
15 |
+
# Download DETR model (only the model weights (167MB)) and save to local model directory
|
16 |
+
print("🚀 Downloading DETR model from Hugging Face...")
|
17 |
+
hf_hub_download(repo_id="facebook/detr-resnet-50", filename="pytorch_model.bin", local_dir=f"{model_dir}/detr", cache_dir=cache_dir)
|
18 |
+
|
19 |
+
print("✅ DETR model downloaded successfully!")
|
20 |
+
|
21 |
+
if os.path.exists(cache_dir) and shutil.disk_usage(cache_dir).used > max_cache_size:
|
22 |
+
print("🗑️ Clearing Hugging Face cache to free up space...")
|
23 |
+
shutil.rmtree(cache_dir)
|
24 |
+
os.makedirs(cache_dir, exist_ok=True)
|
entrypoint.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
echo "🚀 Starting FastAPI server with Uvicorn..."
|
3 |
+
exec python -m uvicorn app:app --host 0.0.0.0 --port 7860
|
icon.png
ADDED
![]() |
model/donothing.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
this directory serves as temporary folder placing tmp files
|
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Image Processing
|
2 |
+
opencv-python-headless
|
3 |
+
pillow
|
4 |
+
numpy
|
5 |
+
pillow-avif-plugin
|
6 |
+
|
7 |
+
# Vision Models
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
torchaudio
|
11 |
+
scikit-learn
|
12 |
+
ultralytics
|
13 |
+
timm
|
14 |
+
yolov5
|
15 |
+
huggingface_hub>=0.20.3
|
16 |
+
transformers==4.37.2
|
17 |
+
accelerate==0.27.2
|
18 |
+
|
19 |
+
# Video Processing
|
20 |
+
ffmpeg-python
|
21 |
+
|
22 |
+
# Server
|
23 |
+
fastapi
|
24 |
+
uvicorn
|
25 |
+
python-multipart
|
26 |
+
|
27 |
+
# Git (needed for clone/setup LoveDA repo)
|
28 |
+
git-lfs
|
setup.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Dir path
|
4 |
+
CACHE_DIR = "/home/user/app/cache"
|
5 |
+
MODEL_DIR = "/home/user/app/model"
|
6 |
+
|
7 |
+
# Verify structures:
|
8 |
+
|
9 |
+
# Model Dir
|
10 |
+
def print_model():
|
11 |
+
print("\n📂 Model Structure (Build Level):")
|
12 |
+
for root, dirs, files in os.walk(MODEL_DIR):
|
13 |
+
print(f"📁 {root}/")
|
14 |
+
for file in files:
|
15 |
+
print(f" 📄 {file}")
|
16 |
+
|
17 |
+
# Cache Dir
|
18 |
+
def print_cache():
|
19 |
+
print("\n📂 Cache Structure (Build Level):")
|
20 |
+
for root, dirs, files in os.walk(CACHE_DIR):
|
21 |
+
print(f"📁 {root}/")
|
22 |
+
for file in files:
|
23 |
+
print(f" 📄 {file}")
|
24 |
+
|
25 |
+
|
26 |
+
# Show
|
27 |
+
print_model()
|
28 |
+
print_cache()
|
sprite.png
ADDED
![]() |
uploads/donothing.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
this directory serves as temporary folder placing tmp files
|