File size: 2,901 Bytes
e5ed27b
 
 
 
 
93d69a6
e5ed27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d69a6
 
 
 
 
 
e5ed27b
93d69a6
 
 
e5ed27b
93d69a6
 
 
 
 
e5ed27b
93d69a6
 
 
 
 
 
 
e5ed27b
93d69a6
 
 
 
e5ed27b
93d69a6
e5ed27b
93d69a6
 
 
 
 
e5ed27b
93d69a6
 
 
 
 
 
 
 
 
 
 
e5ed27b
 
 
 
1b22e95
e5ed27b
 
 
 
 
 
 
adefd33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import whisper
import datetime
import torch
import subprocess
import os
from pyannote.audio import Audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.core import Segment
import wave
import contextlib
from sklearn.cluster import AgglomerativeClustering
import numpy as np

# Load Whisper model
model_size = "medium.en"
model = whisper.load_model(model_size)

audio = Audio()
embedding_model = PretrainedSpeakerEmbedding("speechbrain/spkrec-ecapa-voxceleb", device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))

def transcribe_and_diarize(audio_file, num_speakers=2):
    try:
        path = audio_file.name
        # Convert to WAV if necessary
        if not path.endswith('.wav'):
            subprocess.call(['ffmpeg', '-i', path, 'audio.wav', '-y'])
            path = 'audio.wav'

        # Transcribe audio
        result = model.transcribe(path)
        segments = result["segments"]

        # Get audio duration
        with contextlib.closing(wave.open(path, 'r')) as f:
            frames = f.getnframes()
            rate = f.getframerate()
            duration = frames / float(rate)

        # Define function to extract segment embeddings
        def segment_embedding(segment):
            start = segment["start"]
            end = min(duration, segment["end"])
            clip = Segment(start, end)
            waveform, sample_rate = audio.crop(path, clip)
            return embedding_model(waveform[None])

        # Extract embeddings for each segment
        embeddings = np.zeros(shape=(len(segments), 192))
        for i, segment in enumerate(segments):
            embeddings[i] = segment_embedding(segment)

        embeddings = np.nan_to_num(embeddings)

        # Perform speaker clustering
        clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
        labels = clustering.labels_
        for i in range(len(segments)):
            segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

        # Generate transcript
        transcript = ""
        for i, segment in enumerate(segments):
            if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
                transcript += "\n" + segment["speaker"] + ' ' + str(datetime.timedelta(seconds=round(segment["start"]))) + '\n'
            transcript += segment["text"][1:] + ' '
            transcript += "\n\n"
        
        return transcript
    except Exception as e:
        return f"An error occurred: {str(e)}"

iface = gr.Interface(
    fn=transcribe_and_diarize,
    inputs=[
        gr.Audio(type="filepath", label="Upload Audio File"),
        gr.Number(value=2, label="Number of Speakers")
    ],
    outputs="text",
    title="Audio Transcription and Speaker Diarization",
    description="Upload an audio file to get a transcription with speaker diarization."
)

iface.launch()