File size: 2,650 Bytes
7c51e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
import pandas as pd
from sqlalchemy import create_engine, text

# Create MySQL engine
engine = create_engine('mysql+pymysql://root:Binu1997#$@localhost/research_db')

# Function to fetch unique company names from the database
def get_company_names():
    query = text("SELECT DISTINCT `Company name` FROM research_db.ads_table")
    with engine.connect() as conn:
        result = conn.execute(query)
        companies = [row[0] for row in result]
    return companies

# Function to fetch ads data for a specific company
def get_ads_data(company_name):
    query = text(f"SELECT * FROM research_db.ads_table WHERE `Company name` = :company_name")
    with engine.connect() as conn:
        df = pd.read_sql(query, conn, params={"company_name": company_name})
    return df

# Load custom CSS
def load_css():
    with open("styles.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

# Load custom CSS
load_css()

# Main title
st.markdown('<p class="main-title">Facebook AD Search</p>', unsafe_allow_html=True)

# Sidebar for company selection
st.sidebar.markdown('<p class="company-select">Select Telco Company</p>', unsafe_allow_html=True)
company_names = get_company_names()
selected_company = st.sidebar.selectbox("", company_names)

# Display selected company ads data
if selected_company:
    ads_data = get_ads_data(selected_company)
    st.markdown(f'<p class="heading">Displaying ads for: {selected_company}</p>', unsafe_allow_html=True)
    
    if not ads_data.empty:
        # Multiselect widget for column selection
        columns = ads_data.columns.tolist()
        selected_columns = st.sidebar.multiselect('Select columns to display:', columns, default=columns)
        
        if selected_columns:
            filtered_data = ads_data[selected_columns]
            st.markdown('<div class="dataframe-style">', unsafe_allow_html=True)
            st.write(filtered_data)
            st.markdown('</div>', unsafe_allow_html=True)
            
            # Display summary or statistics
            st.markdown('<p class="heading">Summary</p>', unsafe_allow_html=True)
            st.markdown(f'<p class="summary-text">Total ads found: {len(ads_data)}</p>', unsafe_allow_html=True)
        else:
            st.markdown('<p class="summary-text">Please select at least one column to display.</p>', unsafe_allow_html=True)
    else:
        st.markdown('<p class="summary-text">No ads found for the selected company.</p>', unsafe_allow_html=True)
else:
    st.markdown('<p class="summary-text">Please select a company from the sidebar to view ads.</p>', unsafe_allow_html=True)