import torch import torch.nn as nn from torchvision import transforms from PIL import Image, ImageFilter import gradio as gr import numpy as np import os import uuid device = torch.device("cuda" if torch.cuda.is_available() else "cpu") transform = transforms.Compose([ transforms.Resize((128, 128)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) resize_transform = transforms.Resize((512, 512)) def load_image(image): image = Image.fromarray(image).convert('RGB') image = transform(image) return image.unsqueeze(0).to(device) def interpolate_vectors(v1, v2, num_steps): return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)] def infer_and_interpolate(image1, image2, num_interpolations=24): image1 = load_image(image1) image2 = load_image(image2) with torch.no_grad(): mu1, logvar1 = model.encode(image1) mu2, logvar2 = model.encode(image2) interpolated_vectors = interpolate_vectors(mu1, mu2, num_interpolations) decoded_images = [model.decode(vec).squeeze(0) for vec in interpolated_vectors] return decoded_images def create_gif(decoded_images, duration=200, apply_blur=False): reversed_images = decoded_images[::-1] all_images = decoded_images + reversed_images pil_images = [] for img in all_images: img = (img - img.min()) / (img.max() - img.min()) img = (img * 255).byte() pil_img = transforms.ToPILImage()(img.cpu()).convert("RGB") pil_img = resize_transform(pil_img) if apply_blur: pil_img = pil_img.filter(ImageFilter.GaussianBlur(radius=1)) pil_images.append(pil_img) gif_filename = f"/tmp/morphing_{uuid.uuid4().hex}.gif" pil_images[0].save(gif_filename, save_all=True, append_images=pil_images[1:], duration=duration, loop=0) return gif_filename def create_morphing_gif(image1, image2, num_interpolations=24, duration=200): decoded_images = infer_and_interpolate(image1, image2, num_interpolations) gif_path = create_gif(decoded_images, duration) return gif_path examples = [ ["example_images/image1.jpg", "example_images/image2.png", 24, 200], ["example_images/image3.jpg", "example_images/image4.jpg", 30, 150], ] with gr.Blocks() as morphing: with gr.Column(): with gr.Column(): num_interpolations = gr.Slider(minimum=2, maximum=50, value=24, step=1, label="Number of interpolations") duration = gr.Slider(minimum=100, maximum=1000, value=200, step=50, label="Duration per frame (ms)") generate_button = gr.Button("Generate Morphing GIF") output_gif = gr.Image(label="Morphing GIF") with gr.Row(): image1 = gr.Image(label="Upload first image", type="numpy") image2 = gr.Image(label="Upload second image", type="numpy") generate_button.click(fn=create_morphing_gif, inputs=[image1, image2, num_interpolations, duration], outputs=output_gif) gr.Examples(examples=examples, inputs=[image1, image2, num_interpolations, duration])