Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["pip", "uninstall", "gradio"]) | |
subprocess.run(["pip", "install", "gradio==4.31.5"]) | |
import gradio as gr | |
from typing import Dict, Union | |
from gliner import GLiNER | |
import gradio as gr | |
model = GLiNER.from_pretrained("BioMike/logical-gliner-large").to("cpu") | |
qa_examples = [ | |
[ | |
"", | |
"For a student to graduate, they must complete all their required courses and pass the final exam. John has completed all his required courses but failed the final exam. Answer options: 1. John can graduate 2. John cannot graduate 3. John completed all his required courses 4. John passed the final exam", | |
0.5, | |
False | |
], | |
[ | |
"", | |
"(P ∨ Q) → R, (R ∧ S) → T, ¬T, P. Answer options: 1. ¬R 2. ¬S 3. ¬Q 4. R 5. S 6. T", | |
0.5, | |
False | |
], | |
[ | |
"", | |
"(A → B), (B → (C ∧ D)), ¬C, E → F, A, ¬F. Answer options: 1. ¬A 2. ¬B 3. ¬E 4. F", | |
0.5, | |
False | |
]] | |
def merge_entities(entities): | |
if not entities: | |
return [] | |
merged = [] | |
current = entities[0] | |
for next_entity in entities[1:]: | |
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): | |
current['word'] += ' ' + next_entity['word'] | |
current['end'] = next_entity['end'] | |
else: | |
merged.append(current) | |
current = next_entity | |
merged.append(current) | |
return merged | |
def process( | |
question:str, text, threshold: float, nested_ner: bool, labels: str = ["answer"] | |
) -> Dict[str, Union[str, int, float]]: | |
text = question + "\n" + text | |
r = { | |
"text": text, | |
"entities": [ | |
{ | |
"entity": entity["label"], | |
"word": entity["text"], | |
"start": entity["start"], | |
"end": entity["end"], | |
"score": 0, | |
} | |
for entity in model.predict_entities( | |
text, labels, flat_ner=not nested_ner, threshold=threshold | |
) | |
], | |
} | |
r["entities"] = merge_entities(r["entities"]) | |
return r | |
with gr.Blocks(title="Question Answering Task") as qa_interface: | |
question = gr.Textbox(label="Question", placeholder="Enter your question here") | |
input_text = gr.Textbox(label="Text input", placeholder="Enter your text here") | |
threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.") | |
nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?") | |
output = gr.HighlightedText(label="Predicted Entities") | |
submit_btn = gr.Button("Submit") | |
examples = gr.Examples( | |
qa_examples, | |
fn=process, | |
inputs=[question, input_text, threshold, nested_ner], | |
outputs=output, | |
cache_examples=True | |
) | |
theme=gr.themes.Base() | |
input_text.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) | |
question.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) | |
threshold.release(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) | |
submit_btn.click(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) | |
nested_ner.change(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) | |
qa_interface.queue() | |
qa_interface.launch(debug=True, share=True) |