import subprocess subprocess.run(["pip", "uninstall", "gradio"]) subprocess.run(["pip", "install", "gradio==4.31.5"]) import gradio as gr from typing import Dict, Union from gliner import GLiNER import gradio as gr model = GLiNER.from_pretrained("BioMike/logical-gliner-large").to("cpu") qa_examples = [ [ "", "For a student to graduate, they must complete all their required courses and pass the final exam. John has completed all his required courses but failed the final exam. Answer options: 1. John can graduate 2. John cannot graduate 3. John completed all his required courses 4. John passed the final exam", 0.5, False ], [ "", "(P ∨ Q) → R, (R ∧ S) → T, ¬T, P. Answer options: 1. ¬R 2. ¬S 3. ¬Q 4. R 5. S 6. T", 0.5, False ], [ "", "(A → B), (B → (C ∧ D)), ¬C, E → F, A, ¬F. Answer options: 1. ¬A 2. ¬B 3. ¬E 4. F", 0.5, False ]] def merge_entities(entities): if not entities: return [] merged = [] current = entities[0] for next_entity in entities[1:]: if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): current['word'] += ' ' + next_entity['word'] current['end'] = next_entity['end'] else: merged.append(current) current = next_entity merged.append(current) return merged def process( question:str, text, threshold: float, nested_ner: bool, labels: str = ["answer"] ) -> Dict[str, Union[str, int, float]]: text = question + "\n" + text r = { "text": text, "entities": [ { "entity": entity["label"], "word": entity["text"], "start": entity["start"], "end": entity["end"], "score": 0, } for entity in model.predict_entities( text, labels, flat_ner=not nested_ner, threshold=threshold ) ], } r["entities"] = merge_entities(r["entities"]) return r with gr.Blocks(title="Question Answering Task") as qa_interface: question = gr.Textbox(label="Question", placeholder="Enter your question here") input_text = gr.Textbox(label="Text input", placeholder="Enter your text here") threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.") nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?") output = gr.HighlightedText(label="Predicted Entities") submit_btn = gr.Button("Submit") examples = gr.Examples( qa_examples, fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output, cache_examples=True ) theme=gr.themes.Base() input_text.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) question.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) threshold.release(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) submit_btn.click(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) nested_ner.change(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output) qa_interface.queue() qa_interface.launch(debug=True, share=True)