Spaces:
Build error
Build error
/** | |
* Immutable data encourages pure functions (data-in, data-out) and lends itself | |
* to much simpler application development and enabling techniques from | |
* functional programming such as lazy evaluation. | |
* | |
* While designed to bring these powerful functional concepts to JavaScript, it | |
* presents an Object-Oriented API familiar to Javascript engineers and closely | |
* mirroring that of Array, Map, and Set. It is easy and efficient to convert to | |
* and from plain Javascript types. | |
* | |
* ## How to read these docs | |
* | |
* In order to better explain what kinds of values the Immutable.js API expects | |
* and produces, this documentation is presented in a statically typed dialect of | |
* JavaScript (like [Flow][] or [TypeScript][]). You *don't need* to use these | |
* type checking tools in order to use Immutable.js, however becoming familiar | |
* with their syntax will help you get a deeper understanding of this API. | |
* | |
* **A few examples and how to read them.** | |
* | |
* All methods describe the kinds of data they accept and the kinds of data | |
* they return. For example a function which accepts two numbers and returns | |
* a number would look like this: | |
* | |
* ```js | |
* sum(first: number, second: number): number | |
* ``` | |
* | |
* Sometimes, methods can accept different kinds of data or return different | |
* kinds of data, and this is described with a *type variable*, which is | |
* typically in all-caps. For example, a function which always returns the same | |
* kind of data it was provided would look like this: | |
* | |
* ```js | |
* identity<T>(value: T): T | |
* ``` | |
* | |
* Type variables are defined with classes and referred to in methods. For | |
* example, a class that holds onto a value for you might look like this: | |
* | |
* ```js | |
* class Box<T> { | |
* constructor(value: T) | |
* getValue(): T | |
* } | |
* ``` | |
* | |
* In order to manipulate Immutable data, methods that we're used to affecting | |
* a Collection instead return a new Collection of the same type. The type | |
* `this` refers to the same kind of class. For example, a List which returns | |
* new Lists when you `push` a value onto it might look like: | |
* | |
* ```js | |
* class List<T> { | |
* push(value: T): this | |
* } | |
* ``` | |
* | |
* Many methods in Immutable.js accept values which implement the JavaScript | |
* [Iterable][] protocol, and might appear like `Iterable<string>` for something | |
* which represents sequence of strings. Typically in JavaScript we use plain | |
* Arrays (`[]`) when an Iterable is expected, but also all of the Immutable.js | |
* collections are iterable themselves! | |
* | |
* For example, to get a value deep within a structure of data, we might use | |
* `getIn` which expects an `Iterable` path: | |
* | |
* ``` | |
* getIn(path: Iterable<string | number>): unknown | |
* ``` | |
* | |
* To use this method, we could pass an array: `data.getIn([ "key", 2 ])`. | |
* | |
* | |
* Note: All examples are presented in the modern [ES2015][] version of | |
* JavaScript. Use tools like Babel to support older browsers. | |
* | |
* For example: | |
* | |
* ```js | |
* // ES2015 | |
* const mappedFoo = foo.map(x => x * x); | |
* // ES5 | |
* var mappedFoo = foo.map(function (x) { return x * x; }); | |
* ``` | |
* | |
* [ES2015]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla | |
* [TypeScript]: https://www.typescriptlang.org/ | |
* [Flow]: https://flowtype.org/ | |
* [Iterable]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols | |
*/ | |
declare namespace Immutable { | |
/** | |
* @ignore | |
* | |
* Used to convert deeply all immutable types to a plain TS type. | |
* Using `unknown` on object instead of recursive call as we have a circular reference issue | |
*/ | |
export type DeepCopy<T> = T extends Record<infer R> | |
? // convert Record to DeepCopy plain JS object | |
{ | |
[key in keyof R]: R[key] extends object ? unknown : R[key]; | |
} | |
: T extends Collection.Keyed<infer KeyedKey, infer V> | |
? // convert KeyedCollection to DeepCopy plain JS object | |
{ | |
[key in KeyedKey extends string | number | symbol | |
? KeyedKey | |
: string]: V extends object ? unknown : V; | |
} | |
: // convert IndexedCollection or Immutable.Set to DeepCopy plain JS array | |
T extends Collection<infer _, infer V> | |
? Array<V extends object ? unknown : V> | |
: T extends string | number // Iterable scalar types : should be kept as is | |
? T | |
: T extends Iterable<infer V> // Iterable are converted to plain JS array | |
? Array<V extends object ? unknown : V> | |
: T extends object // plain JS object are converted deeply | |
? { | |
[ObjectKey in keyof T]: T[ObjectKey] extends object | |
? unknown | |
: T[ObjectKey]; | |
} | |
: // other case : should be kept as is | |
T; | |
/** | |
* Describes which item in a pair should be placed first when sorting | |
* | |
* @ignore | |
*/ | |
export enum PairSorting { | |
LeftThenRight = -1, | |
RightThenLeft = +1, | |
} | |
/** | |
* Function comparing two items of the same type. It can return: | |
* | |
* * a PairSorting value, to indicate whether the left-hand item or the right-hand item should be placed before the other | |
* | |
* * the traditional numeric return value - especially -1, 0, or 1 | |
* | |
* @ignore | |
*/ | |
export type Comparator<T> = (left: T, right: T) => PairSorting | number; | |
/** | |
* Lists are ordered indexed dense collections, much like a JavaScript | |
* Array. | |
* | |
* Lists are immutable and fully persistent with O(log32 N) gets and sets, | |
* and O(1) push and pop. | |
* | |
* Lists implement Deque, with efficient addition and removal from both the | |
* end (`push`, `pop`) and beginning (`unshift`, `shift`). | |
* | |
* Unlike a JavaScript Array, there is no distinction between an | |
* "unset" index and an index set to `undefined`. `List#forEach` visits all | |
* indices from 0 to size, regardless of whether they were explicitly defined. | |
*/ | |
namespace List { | |
/** | |
* True if the provided value is a List | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable'); | |
* List.isList([]); // false | |
* List.isList(List()); // true | |
* ``` | |
*/ | |
function isList(maybeList: unknown): maybeList is List<unknown>; | |
/** | |
* Creates a new List containing `values`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable'); | |
* List.of(1, 2, 3, 4) | |
* // List [ 1, 2, 3, 4 ] | |
* ``` | |
* | |
* Note: Values are not altered or converted in any way. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable'); | |
* List.of({x:1}, 2, [3], 4) | |
* // List [ { x: 1 }, 2, [ 3 ], 4 ] | |
* ``` | |
*/ | |
function of<T>(...values: Array<T>): List<T>; | |
} | |
/** | |
* Create a new immutable List containing the values of the provided | |
* collection-like. | |
* | |
* Note: `List` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List, Set } = require('immutable') | |
* | |
* const emptyList = List() | |
* // List [] | |
* | |
* const plainArray = [ 1, 2, 3, 4 ] | |
* const listFromPlainArray = List(plainArray) | |
* // List [ 1, 2, 3, 4 ] | |
* | |
* const plainSet = Set([ 1, 2, 3, 4 ]) | |
* const listFromPlainSet = List(plainSet) | |
* // List [ 1, 2, 3, 4 ] | |
* | |
* const arrayIterator = plainArray[Symbol.iterator]() | |
* const listFromCollectionArray = List(arrayIterator) | |
* // List [ 1, 2, 3, 4 ] | |
* | |
* listFromPlainArray.equals(listFromCollectionArray) // true | |
* listFromPlainSet.equals(listFromCollectionArray) // true | |
* listFromPlainSet.equals(listFromPlainArray) // true | |
* ``` | |
*/ | |
function List<T>(collection?: Iterable<T> | ArrayLike<T>): List<T>; | |
interface List<T> extends Collection.Indexed<T> { | |
/** | |
* The number of items in this List. | |
*/ | |
readonly size: number; | |
// Persistent changes | |
/** | |
* Returns a new List which includes `value` at `index`. If `index` already | |
* exists in this List, it will be replaced. | |
* | |
* `index` may be a negative number, which indexes back from the end of the | |
* List. `v.set(-1, "value")` sets the last item in the List. | |
* | |
* If `index` larger than `size`, the returned List's `size` will be large | |
* enough to include the `index`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* const originalList = List([ 0 ]); | |
* // List [ 0 ] | |
* originalList.set(1, 1); | |
* // List [ 0, 1 ] | |
* originalList.set(0, 'overwritten'); | |
* // List [ "overwritten" ] | |
* originalList.set(2, 2); | |
* // List [ 0, undefined, 2 ] | |
* | |
* List().set(50000, 'value').size; | |
* // 50001 | |
* ``` | |
* | |
* Note: `set` can be used in `withMutations`. | |
*/ | |
set(index: number, value: T): List<T>; | |
/** | |
* Returns a new List which excludes this `index` and with a size 1 less | |
* than this List. Values at indices above `index` are shifted down by 1 to | |
* fill the position. | |
* | |
* This is synonymous with `list.splice(index, 1)`. | |
* | |
* `index` may be a negative number, which indexes back from the end of the | |
* List. `v.delete(-1)` deletes the last item in the List. | |
* | |
* Note: `delete` cannot be safely used in IE8 | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 0, 1, 2, 3, 4 ]).delete(0); | |
* // List [ 1, 2, 3, 4 ] | |
* ``` | |
* | |
* Since `delete()` re-indexes values, it produces a complete copy, which | |
* has `O(N)` complexity. | |
* | |
* Note: `delete` *cannot* be used in `withMutations`. | |
* | |
* @alias remove | |
*/ | |
delete(index: number): List<T>; | |
remove(index: number): List<T>; | |
/** | |
* Returns a new List with `value` at `index` with a size 1 more than this | |
* List. Values at indices above `index` are shifted over by 1. | |
* | |
* This is synonymous with `list.splice(index, 0, value)`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 0, 1, 2, 3, 4 ]).insert(6, 5) | |
* // List [ 0, 1, 2, 3, 4, 5 ] | |
* ``` | |
* | |
* Since `insert()` re-indexes values, it produces a complete copy, which | |
* has `O(N)` complexity. | |
* | |
* Note: `insert` *cannot* be used in `withMutations`. | |
*/ | |
insert(index: number, value: T): List<T>; | |
/** | |
* Returns a new List with 0 size and no values in constant time. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 1, 2, 3, 4 ]).clear() | |
* // List [] | |
* ``` | |
* | |
* Note: `clear` can be used in `withMutations`. | |
*/ | |
clear(): List<T>; | |
/** | |
* Returns a new List with the provided `values` appended, starting at this | |
* List's `size`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 1, 2, 3, 4 ]).push(5) | |
* // List [ 1, 2, 3, 4, 5 ] | |
* ``` | |
* | |
* Note: `push` can be used in `withMutations`. | |
*/ | |
push(...values: Array<T>): List<T>; | |
/** | |
* Returns a new List with a size ones less than this List, excluding | |
* the last index in this List. | |
* | |
* Note: this differs from `Array#pop` because it returns a new | |
* List rather than the removed value. Use `last()` to get the last value | |
* in this List. | |
* | |
* ```js | |
* List([ 1, 2, 3, 4 ]).pop() | |
* // List[ 1, 2, 3 ] | |
* ``` | |
* | |
* Note: `pop` can be used in `withMutations`. | |
*/ | |
pop(): List<T>; | |
/** | |
* Returns a new List with the provided `values` prepended, shifting other | |
* values ahead to higher indices. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 2, 3, 4]).unshift(1); | |
* // List [ 1, 2, 3, 4 ] | |
* ``` | |
* | |
* Note: `unshift` can be used in `withMutations`. | |
*/ | |
unshift(...values: Array<T>): List<T>; | |
/** | |
* Returns a new List with a size ones less than this List, excluding | |
* the first index in this List, shifting all other values to a lower index. | |
* | |
* Note: this differs from `Array#shift` because it returns a new | |
* List rather than the removed value. Use `first()` to get the first | |
* value in this List. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 0, 1, 2, 3, 4 ]).shift(); | |
* // List [ 1, 2, 3, 4 ] | |
* ``` | |
* | |
* Note: `shift` can be used in `withMutations`. | |
*/ | |
shift(): List<T>; | |
/** | |
* Returns a new List with an updated value at `index` with the return | |
* value of calling `updater` with the existing value, or `notSetValue` if | |
* `index` was not set. If called with a single argument, `updater` is | |
* called with the List itself. | |
* | |
* `index` may be a negative number, which indexes back from the end of the | |
* List. `v.update(-1)` updates the last item in the List. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* const list = List([ 'a', 'b', 'c' ]) | |
* const result = list.update(2, val => val.toUpperCase()) | |
* // List [ "a", "b", "C" ] | |
* ``` | |
* | |
* This can be very useful as a way to "chain" a normal function into a | |
* sequence of methods. RxJS calls this "let" and lodash calls it "thru". | |
* | |
* For example, to sum a List after mapping and filtering: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* function sum(collection) { | |
* return collection.reduce((sum, x) => sum + x, 0) | |
* } | |
* | |
* List([ 1, 2, 3 ]) | |
* .map(x => x + 1) | |
* .filter(x => x % 2 === 0) | |
* .update(sum) | |
* // 6 | |
* ``` | |
* | |
* Note: `update(index)` can be used in `withMutations`. | |
* | |
* @see `Map#update` | |
*/ | |
update(index: number, notSetValue: T, updater: (value: T) => T): this; | |
update( | |
index: number, | |
updater: (value: T | undefined) => T | undefined | |
): this; | |
update<R>(updater: (value: this) => R): R; | |
/** | |
* Returns a new List with size `size`. If `size` is less than this | |
* List's size, the new List will exclude values at the higher indices. | |
* If `size` is greater than this List's size, the new List will have | |
* undefined values for the newly available indices. | |
* | |
* When building a new List and the final size is known up front, `setSize` | |
* used in conjunction with `withMutations` may result in the more | |
* performant construction. | |
*/ | |
setSize(size: number): List<T>; | |
// Deep persistent changes | |
/** | |
* Returns a new List having set `value` at this `keyPath`. If any keys in | |
* `keyPath` do not exist, a new immutable Map will be created at that key. | |
* | |
* Index numbers are used as keys to determine the path to follow in | |
* the List. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* const list = List([ 0, 1, 2, List([ 3, 4 ])]) | |
* list.setIn([3, 0], 999); | |
* // List [ 0, 1, 2, List [ 999, 4 ] ] | |
* ``` | |
* | |
* Plain JavaScript Object or Arrays may be nested within an Immutable.js | |
* Collection, and setIn() can update those values as well, treating them | |
* immutably by creating new copies of those values with the changes applied. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* const list = List([ 0, 1, 2, { plain: 'object' }]) | |
* list.setIn([3, 'plain'], 'value'); | |
* // List([ 0, 1, 2, { plain: 'value' }]) | |
* ``` | |
* | |
* Note: `setIn` can be used in `withMutations`. | |
*/ | |
setIn(keyPath: Iterable<unknown>, value: unknown): this; | |
/** | |
* Returns a new List having removed the value at this `keyPath`. If any | |
* keys in `keyPath` do not exist, no change will occur. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* const list = List([ 0, 1, 2, List([ 3, 4 ])]) | |
* list.deleteIn([3, 0]); | |
* // List [ 0, 1, 2, List [ 4 ] ] | |
* ``` | |
* | |
* Plain JavaScript Object or Arrays may be nested within an Immutable.js | |
* Collection, and removeIn() can update those values as well, treating them | |
* immutably by creating new copies of those values with the changes applied. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* const list = List([ 0, 1, 2, { plain: 'object' }]) | |
* list.removeIn([3, 'plain']); | |
* // List([ 0, 1, 2, {}]) | |
* ``` | |
* | |
* Note: `deleteIn` *cannot* be safely used in `withMutations`. | |
* | |
* @alias removeIn | |
*/ | |
deleteIn(keyPath: Iterable<unknown>): this; | |
removeIn(keyPath: Iterable<unknown>): this; | |
/** | |
* Note: `updateIn` can be used in `withMutations`. | |
* | |
* @see `Map#updateIn` | |
*/ | |
updateIn( | |
keyPath: Iterable<unknown>, | |
notSetValue: unknown, | |
updater: (value: unknown) => unknown | |
): this; | |
updateIn( | |
keyPath: Iterable<unknown>, | |
updater: (value: unknown) => unknown | |
): this; | |
/** | |
* Note: `mergeIn` can be used in `withMutations`. | |
* | |
* @see `Map#mergeIn` | |
*/ | |
mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this; | |
/** | |
* Note: `mergeDeepIn` can be used in `withMutations`. | |
* | |
* @see `Map#mergeDeepIn` | |
*/ | |
mergeDeepIn( | |
keyPath: Iterable<unknown>, | |
...collections: Array<unknown> | |
): this; | |
// Transient changes | |
/** | |
* Note: Not all methods can be safely used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* allows being used in `withMutations`. | |
* | |
* @see `Map#withMutations` | |
*/ | |
withMutations(mutator: (mutable: this) => unknown): this; | |
/** | |
* An alternative API for withMutations() | |
* | |
* Note: Not all methods can be safely used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* allows being used in `withMutations`. | |
* | |
* @see `Map#asMutable` | |
*/ | |
asMutable(): this; | |
/** | |
* @see `Map#wasAltered` | |
*/ | |
wasAltered(): boolean; | |
/** | |
* @see `Map#asImmutable` | |
*/ | |
asImmutable(): this; | |
// Sequence algorithms | |
/** | |
* Returns a new List with other values or collections concatenated to this one. | |
* | |
* Note: `concat` can be used in `withMutations`. | |
* | |
* @alias merge | |
*/ | |
concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): List<T | C>; | |
merge<C>(...collections: Array<Iterable<C>>): List<T | C>; | |
/** | |
* Returns a new List with values passed through a | |
* `mapper` function. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* List([ 1, 2 ]).map(x => 10 * x) | |
* // List [ 10, 20 ] | |
* ``` | |
*/ | |
map<M>( | |
mapper: (value: T, key: number, iter: this) => M, | |
context?: unknown | |
): List<M>; | |
/** | |
* Flat-maps the List, returning a new List. | |
* | |
* Similar to `list.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: number, iter: this) => Iterable<M>, | |
context?: unknown | |
): List<M>; | |
/** | |
* Returns a new List with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, index: number, iter: this) => value is F, | |
context?: unknown | |
): List<F>; | |
filter( | |
predicate: (value: T, index: number, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new List with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, index: number, iter: this) => value is F, | |
context?: C | |
): [List<T>, List<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, index: number, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* Returns a List "zipped" with the provided collection. | |
* | |
* Like `zipWith`, but using the default `zipper`: creating an `Array`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 4, 5, 6 ]); | |
* const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] | |
* ``` | |
*/ | |
zip<U>(other: Collection<unknown, U>): List<[T, U]>; | |
zip<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): List<[T, U, V]>; | |
zip(...collections: Array<Collection<unknown, unknown>>): List<unknown>; | |
/** | |
* Returns a List "zipped" with the provided collections. | |
* | |
* Unlike `zip`, `zipAll` continues zipping until the longest collection is | |
* exhausted. Missing values from shorter collections are filled with `undefined`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2 ]); | |
* const b = List([ 3, 4, 5 ]); | |
* const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ] | |
* ``` | |
* | |
* Note: Since zipAll will return a collection as large as the largest | |
* input, some results may contain undefined values. TypeScript cannot | |
* account for these without cases (as of v2.5). | |
*/ | |
zipAll<U>(other: Collection<unknown, U>): List<[T, U]>; | |
zipAll<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): List<[T, U, V]>; | |
zipAll(...collections: Array<Collection<unknown, unknown>>): List<unknown>; | |
/** | |
* Returns a List "zipped" with the provided collections by using a | |
* custom `zipper` function. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable');" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 4, 5, 6 ]); | |
* const c = a.zipWith((a, b) => a + b, b); | |
* // List [ 5, 7, 9 ] | |
* ``` | |
*/ | |
zipWith<U, Z>( | |
zipper: (value: T, otherValue: U) => Z, | |
otherCollection: Collection<unknown, U> | |
): List<Z>; | |
zipWith<U, V, Z>( | |
zipper: (value: T, otherValue: U, thirdValue: V) => Z, | |
otherCollection: Collection<unknown, U>, | |
thirdCollection: Collection<unknown, V> | |
): List<Z>; | |
zipWith<Z>( | |
zipper: (...values: Array<unknown>) => Z, | |
...collections: Array<Collection<unknown, unknown>> | |
): List<Z>; | |
} | |
/** | |
* Immutable Map is an unordered Collection.Keyed of (key, value) pairs with | |
* `O(log32 N)` gets and `O(log32 N)` persistent sets. | |
* | |
* Iteration order of a Map is undefined, however is stable. Multiple | |
* iterations of the same Map will iterate in the same order. | |
* | |
* Map's keys can be of any type, and use `Immutable.is` to determine key | |
* equality. This allows the use of any value (including NaN) as a key. | |
* | |
* Because `Immutable.is` returns equality based on value semantics, and | |
* Immutable collections are treated as values, any Immutable collection may | |
* be used as a key. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, List } = require('immutable'); | |
* Map().set(List([ 1 ]), 'listofone').get(List([ 1 ])); | |
* // 'listofone' | |
* ``` | |
* | |
* Any JavaScript object may be used as a key, however strict identity is used | |
* to evaluate key equality. Two similar looking objects will represent two | |
* different keys. | |
* | |
* Implemented by a hash-array mapped trie. | |
*/ | |
namespace Map { | |
/** | |
* True if the provided value is a Map | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map.isMap({}) // false | |
* Map.isMap(Map()) // true | |
* ``` | |
*/ | |
function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>; | |
/** | |
* Creates a new Map from alternating keys and values | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map.of( | |
* 'key', 'value', | |
* 'numerical value', 3, | |
* 0, 'numerical key' | |
* ) | |
* // Map { 0: "numerical key", "key": "value", "numerical value": 3 } | |
* ``` | |
* | |
* @deprecated Use Map([ [ 'k', 'v' ] ]) or Map({ k: 'v' }) | |
*/ | |
function of(...keyValues: Array<unknown>): Map<unknown, unknown>; | |
} | |
/** | |
* Creates a new Immutable Map. | |
* | |
* Created with the same key value pairs as the provided Collection.Keyed or | |
* JavaScript Object or expects a Collection of [K, V] tuple entries. | |
* | |
* Note: `Map` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ key: "value" }) | |
* Map([ [ "key", "value" ] ]) | |
* ``` | |
* | |
* Keep in mind, when using JS objects to construct Immutable Maps, that | |
* JavaScript Object properties are always strings, even if written in a | |
* quote-less shorthand, while Immutable Maps accept keys of any type. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* let obj = { 1: "one" } | |
* Object.keys(obj) // [ "1" ] | |
* assert.equal(obj["1"], obj[1]) // "one" === "one" | |
* | |
* let map = Map(obj) | |
* assert.notEqual(map.get("1"), map.get(1)) // "one" !== undefined | |
* ``` | |
* | |
* Property access for JavaScript Objects first converts the key to a string, | |
* but since Immutable Map keys can be of any type the argument to `get()` is | |
* not altered. | |
*/ | |
function Map<K, V>(collection?: Iterable<[K, V]>): Map<K, V>; | |
function Map<V>(obj: { [key: string]: V }): Map<string, V>; | |
function Map<K extends string | symbol, V>(obj: { [P in K]?: V }): Map<K, V>; | |
interface Map<K, V> extends Collection.Keyed<K, V> { | |
/** | |
* The number of entries in this Map. | |
*/ | |
readonly size: number; | |
// Persistent changes | |
/** | |
* Returns a new Map also containing the new key, value pair. If an equivalent | |
* key already exists in this Map, it will be replaced. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const originalMap = Map() | |
* const newerMap = originalMap.set('key', 'value') | |
* const newestMap = newerMap.set('key', 'newer value') | |
* | |
* originalMap | |
* // Map {} | |
* newerMap | |
* // Map { "key": "value" } | |
* newestMap | |
* // Map { "key": "newer value" } | |
* ``` | |
* | |
* Note: `set` can be used in `withMutations`. | |
*/ | |
set(key: K, value: V): this; | |
/** | |
* Returns a new Map which excludes this `key`. | |
* | |
* Note: `delete` cannot be safely used in IE8, but is provided to mirror | |
* the ES6 collection API. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const originalMap = Map({ | |
* key: 'value', | |
* otherKey: 'other value' | |
* }) | |
* // Map { "key": "value", "otherKey": "other value" } | |
* originalMap.delete('otherKey') | |
* // Map { "key": "value" } | |
* ``` | |
* | |
* Note: `delete` can be used in `withMutations`. | |
* | |
* @alias remove | |
*/ | |
delete(key: K): this; | |
remove(key: K): this; | |
/** | |
* Returns a new Map which excludes the provided `keys`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const names = Map({ a: "Aaron", b: "Barry", c: "Connor" }) | |
* names.deleteAll([ 'a', 'c' ]) | |
* // Map { "b": "Barry" } | |
* ``` | |
* | |
* Note: `deleteAll` can be used in `withMutations`. | |
* | |
* @alias removeAll | |
*/ | |
deleteAll(keys: Iterable<K>): this; | |
removeAll(keys: Iterable<K>): this; | |
/** | |
* Returns a new Map containing no keys or values. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ key: 'value' }).clear() | |
* // Map {} | |
* ``` | |
* | |
* Note: `clear` can be used in `withMutations`. | |
*/ | |
clear(): this; | |
/** | |
* Returns a new Map having updated the value at this `key` with the return | |
* value of calling `updater` with the existing value. | |
* | |
* Similar to: `map.set(key, updater(map.get(key)))`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const aMap = Map({ key: 'value' }) | |
* const newMap = aMap.update('key', value => value + value) | |
* // Map { "key": "valuevalue" } | |
* ``` | |
* | |
* This is most commonly used to call methods on collections within a | |
* structure of data. For example, in order to `.push()` onto a nested `List`, | |
* `update` and `push` can be used together: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map, List } = require('immutable');" } | |
* --> | |
* ```js | |
* const aMap = Map({ nestedList: List([ 1, 2, 3 ]) }) | |
* const newMap = aMap.update('nestedList', list => list.push(4)) | |
* // Map { "nestedList": List [ 1, 2, 3, 4 ] } | |
* ``` | |
* | |
* When a `notSetValue` is provided, it is provided to the `updater` | |
* function when the value at the key does not exist in the Map. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* const aMap = Map({ key: 'value' }) | |
* const newMap = aMap.update('noKey', 'no value', value => value + value) | |
* // Map { "key": "value", "noKey": "no valueno value" } | |
* ``` | |
* | |
* However, if the `updater` function returns the same value it was called | |
* with, then no change will occur. This is still true if `notSetValue` | |
* is provided. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* const aMap = Map({ apples: 10 }) | |
* const newMap = aMap.update('oranges', 0, val => val) | |
* // Map { "apples": 10 } | |
* assert.strictEqual(newMap, map); | |
* ``` | |
* | |
* For code using ES2015 or later, using `notSetValue` is discourged in | |
* favor of function parameter default values. This helps to avoid any | |
* potential confusion with identify functions as described above. | |
* | |
* The previous example behaves differently when written with default values: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* const aMap = Map({ apples: 10 }) | |
* const newMap = aMap.update('oranges', (val = 0) => val) | |
* // Map { "apples": 10, "oranges": 0 } | |
* ``` | |
* | |
* If no key is provided, then the `updater` function return value is | |
* returned as well. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* const aMap = Map({ key: 'value' }) | |
* const result = aMap.update(aMap => aMap.get('key')) | |
* // "value" | |
* ``` | |
* | |
* This can be very useful as a way to "chain" a normal function into a | |
* sequence of methods. RxJS calls this "let" and lodash calls it "thru". | |
* | |
* For example, to sum the values in a Map | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable');" } | |
* --> | |
* ```js | |
* function sum(collection) { | |
* return collection.reduce((sum, x) => sum + x, 0) | |
* } | |
* | |
* Map({ x: 1, y: 2, z: 3 }) | |
* .map(x => x + 1) | |
* .filter(x => x % 2 === 0) | |
* .update(sum) | |
* // 6 | |
* ``` | |
* | |
* Note: `update(key)` can be used in `withMutations`. | |
*/ | |
update(key: K, notSetValue: V, updater: (value: V) => V): this; | |
update(key: K, updater: (value: V | undefined) => V | undefined): this; | |
update<R>(updater: (value: this) => R): R; | |
/** | |
* Returns a new Map resulting from merging the provided Collections | |
* (or JS objects) into this Map. In other words, this takes each entry of | |
* each collection and sets it on this Map. | |
* | |
* Note: Values provided to `merge` are shallowly converted before being | |
* merged. No nested values are altered. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const one = Map({ a: 10, b: 20, c: 30 }) | |
* const two = Map({ b: 40, a: 50, d: 60 }) | |
* one.merge(two) // Map { "a": 50, "b": 40, "c": 30, "d": 60 } | |
* two.merge(one) // Map { "b": 20, "a": 10, "d": 60, "c": 30 } | |
* ``` | |
* | |
* Note: `merge` can be used in `withMutations`. | |
* | |
* @alias concat | |
*/ | |
merge<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): Map<K | KC, V | VC>; | |
merge<C>( | |
...collections: Array<{ [key: string]: C }> | |
): Map<K | string, V | C>; | |
concat<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): Map<K | KC, V | VC>; | |
concat<C>( | |
...collections: Array<{ [key: string]: C }> | |
): Map<K | string, V | C>; | |
/** | |
* Like `merge()`, `mergeWith()` returns a new Map resulting from merging | |
* the provided Collections (or JS objects) into this Map, but uses the | |
* `merger` function for dealing with conflicts. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const one = Map({ a: 10, b: 20, c: 30 }) | |
* const two = Map({ b: 40, a: 50, d: 60 }) | |
* one.mergeWith((oldVal, newVal) => oldVal / newVal, two) | |
* // { "a": 0.2, "b": 0.5, "c": 30, "d": 60 } | |
* two.mergeWith((oldVal, newVal) => oldVal / newVal, one) | |
* // { "b": 2, "a": 5, "d": 60, "c": 30 } | |
* ``` | |
* | |
* Note: `mergeWith` can be used in `withMutations`. | |
*/ | |
mergeWith( | |
merger: (oldVal: V, newVal: V, key: K) => V, | |
...collections: Array<Iterable<[K, V]> | { [key: string]: V }> | |
): this; | |
/** | |
* Like `merge()`, but when two compatible collections are encountered with | |
* the same key, it merges them as well, recursing deeply through the nested | |
* data. Two collections are considered to be compatible (and thus will be | |
* merged together) if they both fall into one of three categories: keyed | |
* (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and | |
* arrays), or set-like (e.g., `Set`s). If they fall into separate | |
* categories, `mergeDeep` will replace the existing collection with the | |
* collection being merged in. This behavior can be customized by using | |
* `mergeDeepWith()`. | |
* | |
* Note: Indexed and set-like collections are merged using | |
* `concat()`/`union()` and therefore do not recurse. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) }) | |
* const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) }) | |
* one.mergeDeep(two) | |
* // Map { | |
* // "a": Map { "x": 2, "y": 10 }, | |
* // "b": Map { "x": 20, "y": 5 }, | |
* // "c": Map { "z": 3 } | |
* // } | |
* ``` | |
* | |
* Note: `mergeDeep` can be used in `withMutations`. | |
*/ | |
mergeDeep( | |
...collections: Array<Iterable<[K, V]> | { [key: string]: V }> | |
): this; | |
/** | |
* Like `mergeDeep()`, but when two non-collections or incompatible | |
* collections are encountered at the same key, it uses the `merger` | |
* function to determine the resulting value. Collections are considered | |
* incompatible if they fall into separate categories between keyed, | |
* indexed, and set-like. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) }) | |
* const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) }) | |
* one.mergeDeepWith((oldVal, newVal) => oldVal / newVal, two) | |
* // Map { | |
* // "a": Map { "x": 5, "y": 10 }, | |
* // "b": Map { "x": 20, "y": 10 }, | |
* // "c": Map { "z": 3 } | |
* // } | |
* ``` | |
* | |
* Note: `mergeDeepWith` can be used in `withMutations`. | |
*/ | |
mergeDeepWith( | |
merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown, | |
...collections: Array<Iterable<[K, V]> | { [key: string]: V }> | |
): this; | |
// Deep persistent changes | |
/** | |
* Returns a new Map having set `value` at this `keyPath`. If any keys in | |
* `keyPath` do not exist, a new immutable Map will be created at that key. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const originalMap = Map({ | |
* subObject: Map({ | |
* subKey: 'subvalue', | |
* subSubObject: Map({ | |
* subSubKey: 'subSubValue' | |
* }) | |
* }) | |
* }) | |
* | |
* const newMap = originalMap.setIn(['subObject', 'subKey'], 'ha ha!') | |
* // Map { | |
* // "subObject": Map { | |
* // "subKey": "ha ha!", | |
* // "subSubObject": Map { "subSubKey": "subSubValue" } | |
* // } | |
* // } | |
* | |
* const newerMap = originalMap.setIn( | |
* ['subObject', 'subSubObject', 'subSubKey'], | |
* 'ha ha ha!' | |
* ) | |
* // Map { | |
* // "subObject": Map { | |
* // "subKey": "subvalue", | |
* // "subSubObject": Map { "subSubKey": "ha ha ha!" } | |
* // } | |
* // } | |
* ``` | |
* | |
* Plain JavaScript Object or Arrays may be nested within an Immutable.js | |
* Collection, and setIn() can update those values as well, treating them | |
* immutably by creating new copies of those values with the changes applied. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const originalMap = Map({ | |
* subObject: { | |
* subKey: 'subvalue', | |
* subSubObject: { | |
* subSubKey: 'subSubValue' | |
* } | |
* } | |
* }) | |
* | |
* originalMap.setIn(['subObject', 'subKey'], 'ha ha!') | |
* // Map { | |
* // "subObject": { | |
* // subKey: "ha ha!", | |
* // subSubObject: { subSubKey: "subSubValue" } | |
* // } | |
* // } | |
* ``` | |
* | |
* If any key in the path exists but cannot be updated (such as a primitive | |
* like number or a custom Object like Date), an error will be thrown. | |
* | |
* Note: `setIn` can be used in `withMutations`. | |
*/ | |
setIn(keyPath: Iterable<unknown>, value: unknown): this; | |
/** | |
* Returns a new Map having removed the value at this `keyPath`. If any keys | |
* in `keyPath` do not exist, no change will occur. | |
* | |
* Note: `deleteIn` can be used in `withMutations`. | |
* | |
* @alias removeIn | |
*/ | |
deleteIn(keyPath: Iterable<unknown>): this; | |
removeIn(keyPath: Iterable<unknown>): this; | |
/** | |
* Returns a new Map having applied the `updater` to the entry found at the | |
* keyPath. | |
* | |
* This is most commonly used to call methods on collections nested within a | |
* structure of data. For example, in order to `.push()` onto a nested `List`, | |
* `updateIn` and `push` can be used together: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, List } = require('immutable') | |
* const map = Map({ inMap: Map({ inList: List([ 1, 2, 3 ]) }) }) | |
* const newMap = map.updateIn(['inMap', 'inList'], list => list.push(4)) | |
* // Map { "inMap": Map { "inList": List [ 1, 2, 3, 4 ] } } | |
* ``` | |
* | |
* If any keys in `keyPath` do not exist, new Immutable `Map`s will | |
* be created at those keys. If the `keyPath` does not already contain a | |
* value, the `updater` function will be called with `notSetValue`, if | |
* provided, otherwise `undefined`. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable')" } | |
* --> | |
* ```js | |
* const map = Map({ a: Map({ b: Map({ c: 10 }) }) }) | |
* const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2) | |
* // Map { "a": Map { "b": Map { "c": 20 } } } | |
* ``` | |
* | |
* If the `updater` function returns the same value it was called with, then | |
* no change will occur. This is still true if `notSetValue` is provided. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable')" } | |
* --> | |
* ```js | |
* const map = Map({ a: Map({ b: Map({ c: 10 }) }) }) | |
* const newMap = map.updateIn(['a', 'b', 'x'], 100, val => val) | |
* // Map { "a": Map { "b": Map { "c": 10 } } } | |
* assert.strictEqual(newMap, aMap) | |
* ``` | |
* | |
* For code using ES2015 or later, using `notSetValue` is discourged in | |
* favor of function parameter default values. This helps to avoid any | |
* potential confusion with identify functions as described above. | |
* | |
* The previous example behaves differently when written with default values: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable')" } | |
* --> | |
* ```js | |
* const map = Map({ a: Map({ b: Map({ c: 10 }) }) }) | |
* const newMap = map.updateIn(['a', 'b', 'x'], (val = 100) => val) | |
* // Map { "a": Map { "b": Map { "c": 10, "x": 100 } } } | |
* ``` | |
* | |
* Plain JavaScript Object or Arrays may be nested within an Immutable.js | |
* Collection, and updateIn() can update those values as well, treating them | |
* immutably by creating new copies of those values with the changes applied. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Map } = require('immutable')" } | |
* --> | |
* ```js | |
* const map = Map({ a: { b: { c: 10 } } }) | |
* const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2) | |
* // Map { "a": { b: { c: 20 } } } | |
* ``` | |
* | |
* If any key in the path exists but cannot be updated (such as a primitive | |
* like number or a custom Object like Date), an error will be thrown. | |
* | |
* Note: `updateIn` can be used in `withMutations`. | |
*/ | |
updateIn( | |
keyPath: Iterable<unknown>, | |
notSetValue: unknown, | |
updater: (value: unknown) => unknown | |
): this; | |
updateIn( | |
keyPath: Iterable<unknown>, | |
updater: (value: unknown) => unknown | |
): this; | |
/** | |
* A combination of `updateIn` and `merge`, returning a new Map, but | |
* performing the merge at a point arrived at by following the keyPath. | |
* In other words, these two lines are equivalent: | |
* | |
* ```js | |
* map.updateIn(['a', 'b', 'c'], abc => abc.merge(y)) | |
* map.mergeIn(['a', 'b', 'c'], y) | |
* ``` | |
* | |
* Note: `mergeIn` can be used in `withMutations`. | |
*/ | |
mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this; | |
/** | |
* A combination of `updateIn` and `mergeDeep`, returning a new Map, but | |
* performing the deep merge at a point arrived at by following the keyPath. | |
* In other words, these two lines are equivalent: | |
* | |
* ```js | |
* map.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y)) | |
* map.mergeDeepIn(['a', 'b', 'c'], y) | |
* ``` | |
* | |
* Note: `mergeDeepIn` can be used in `withMutations`. | |
*/ | |
mergeDeepIn( | |
keyPath: Iterable<unknown>, | |
...collections: Array<unknown> | |
): this; | |
// Transient changes | |
/** | |
* Every time you call one of the above functions, a new immutable Map is | |
* created. If a pure function calls a number of these to produce a final | |
* return value, then a penalty on performance and memory has been paid by | |
* creating all of the intermediate immutable Maps. | |
* | |
* If you need to apply a series of mutations to produce a new immutable | |
* Map, `withMutations()` creates a temporary mutable copy of the Map which | |
* can apply mutations in a highly performant manner. In fact, this is | |
* exactly how complex mutations like `merge` are done. | |
* | |
* As an example, this results in the creation of 2, not 4, new Maps: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const map1 = Map() | |
* const map2 = map1.withMutations(map => { | |
* map.set('a', 1).set('b', 2).set('c', 3) | |
* }) | |
* assert.equal(map1.size, 0) | |
* assert.equal(map2.size, 3) | |
* ``` | |
* | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Read the documentation for each method to see if it | |
* is safe to use in `withMutations`. | |
*/ | |
withMutations(mutator: (mutable: this) => unknown): this; | |
/** | |
* Another way to avoid creation of intermediate Immutable maps is to create | |
* a mutable copy of this collection. Mutable copies *always* return `this`, | |
* and thus shouldn't be used for equality. Your function should never return | |
* a mutable copy of a collection, only use it internally to create a new | |
* collection. | |
* | |
* If possible, use `withMutations` to work with temporary mutable copies as | |
* it provides an easier to use API and considers many common optimizations. | |
* | |
* Note: if the collection is already mutable, `asMutable` returns itself. | |
* | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Read the documentation for each method to see if it | |
* is safe to use in `withMutations`. | |
* | |
* @see `Map#asImmutable` | |
*/ | |
asMutable(): this; | |
/** | |
* Returns true if this is a mutable copy (see `asMutable()`) and mutative | |
* alterations have been applied. | |
* | |
* @see `Map#asMutable` | |
*/ | |
wasAltered(): boolean; | |
/** | |
* The yin to `asMutable`'s yang. Because it applies to mutable collections, | |
* this operation is *mutable* and may return itself (though may not | |
* return itself, i.e. if the result is an empty collection). Once | |
* performed, the original mutable copy must no longer be mutated since it | |
* may be the immutable result. | |
* | |
* If possible, use `withMutations` to work with temporary mutable copies as | |
* it provides an easier to use API and considers many common optimizations. | |
* | |
* @see `Map#asMutable` | |
*/ | |
asImmutable(): this; | |
// Sequence algorithms | |
/** | |
* Returns a new Map with values passed through a | |
* `mapper` function. | |
* | |
* Map({ a: 1, b: 2 }).map(x => 10 * x) | |
* // Map { a: 10, b: 20 } | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Map<K, M>; | |
/** | |
* @see Collection.Keyed.mapKeys | |
*/ | |
mapKeys<M>( | |
mapper: (key: K, value: V, iter: this) => M, | |
context?: unknown | |
): Map<M, V>; | |
/** | |
* @see Collection.Keyed.mapEntries | |
*/ | |
mapEntries<KM, VM>( | |
mapper: ( | |
entry: [K, V], | |
index: number, | |
iter: this | |
) => [KM, VM] | undefined, | |
context?: unknown | |
): Map<KM, VM>; | |
/** | |
* Flat-maps the Map, returning a new Map. | |
* | |
* Similar to `data.map(...).flatten(true)`. | |
*/ | |
flatMap<KM, VM>( | |
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>, | |
context?: unknown | |
): Map<KM, VM>; | |
/** | |
* Returns a new Map with only the entries for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): Map<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Map with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [Map<K, V>, Map<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* @see Collection.Keyed.flip | |
*/ | |
flip(): Map<V, K>; | |
} | |
/** | |
* A type of Map that has the additional guarantee that the iteration order of | |
* entries will be the order in which they were set(). | |
* | |
* The iteration behavior of OrderedMap is the same as native ES6 Map and | |
* JavaScript Object. | |
* | |
* Note that `OrderedMap` are more expensive than non-ordered `Map` and may | |
* consume more memory. `OrderedMap#set` is amortized O(log32 N), but not | |
* stable. | |
*/ | |
namespace OrderedMap { | |
/** | |
* True if the provided value is an OrderedMap. | |
*/ | |
function isOrderedMap( | |
maybeOrderedMap: unknown | |
): maybeOrderedMap is OrderedMap<unknown, unknown>; | |
} | |
/** | |
* Creates a new Immutable OrderedMap. | |
* | |
* Created with the same key value pairs as the provided Collection.Keyed or | |
* JavaScript Object or expects a Collection of [K, V] tuple entries. | |
* | |
* The iteration order of key-value pairs provided to this constructor will | |
* be preserved in the OrderedMap. | |
* | |
* let newOrderedMap = OrderedMap({key: "value"}) | |
* let newOrderedMap = OrderedMap([["key", "value"]]) | |
* | |
* Note: `OrderedMap` is a factory function and not a class, and does not use | |
* the `new` keyword during construction. | |
*/ | |
function OrderedMap<K, V>(collection?: Iterable<[K, V]>): OrderedMap<K, V>; | |
function OrderedMap<V>(obj: { [key: string]: V }): OrderedMap<string, V>; | |
interface OrderedMap<K, V> extends Map<K, V> { | |
/** | |
* The number of entries in this OrderedMap. | |
*/ | |
readonly size: number; | |
/** | |
* Returns a new OrderedMap also containing the new key, value pair. If an | |
* equivalent key already exists in this OrderedMap, it will be replaced | |
* while maintaining the existing order. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { OrderedMap } = require('immutable') | |
* const originalMap = OrderedMap({a:1, b:1, c:1}) | |
* const updatedMap = originalMap.set('b', 2) | |
* | |
* originalMap | |
* // OrderedMap {a: 1, b: 1, c: 1} | |
* updatedMap | |
* // OrderedMap {a: 1, b: 2, c: 1} | |
* ``` | |
* | |
* Note: `set` can be used in `withMutations`. | |
*/ | |
set(key: K, value: V): this; | |
/** | |
* Returns a new OrderedMap resulting from merging the provided Collections | |
* (or JS objects) into this OrderedMap. In other words, this takes each | |
* entry of each collection and sets it on this OrderedMap. | |
* | |
* Note: Values provided to `merge` are shallowly converted before being | |
* merged. No nested values are altered. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { OrderedMap } = require('immutable') | |
* const one = OrderedMap({ a: 10, b: 20, c: 30 }) | |
* const two = OrderedMap({ b: 40, a: 50, d: 60 }) | |
* one.merge(two) // OrderedMap { "a": 50, "b": 40, "c": 30, "d": 60 } | |
* two.merge(one) // OrderedMap { "b": 20, "a": 10, "d": 60, "c": 30 } | |
* ``` | |
* | |
* Note: `merge` can be used in `withMutations`. | |
* | |
* @alias concat | |
*/ | |
merge<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): OrderedMap<K | KC, V | VC>; | |
merge<C>( | |
...collections: Array<{ [key: string]: C }> | |
): OrderedMap<K | string, V | C>; | |
concat<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): OrderedMap<K | KC, V | VC>; | |
concat<C>( | |
...collections: Array<{ [key: string]: C }> | |
): OrderedMap<K | string, V | C>; | |
// Sequence algorithms | |
/** | |
* Returns a new OrderedMap with values passed through a | |
* `mapper` function. | |
* | |
* OrderedMap({ a: 1, b: 2 }).map(x => 10 * x) | |
* // OrderedMap { "a": 10, "b": 20 } | |
* | |
* Note: `map()` always returns a new instance, even if it produced the same | |
* value at every step. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): OrderedMap<K, M>; | |
/** | |
* @see Collection.Keyed.mapKeys | |
*/ | |
mapKeys<M>( | |
mapper: (key: K, value: V, iter: this) => M, | |
context?: unknown | |
): OrderedMap<M, V>; | |
/** | |
* @see Collection.Keyed.mapEntries | |
*/ | |
mapEntries<KM, VM>( | |
mapper: ( | |
entry: [K, V], | |
index: number, | |
iter: this | |
) => [KM, VM] | undefined, | |
context?: unknown | |
): OrderedMap<KM, VM>; | |
/** | |
* Flat-maps the OrderedMap, returning a new OrderedMap. | |
* | |
* Similar to `data.map(...).flatten(true)`. | |
*/ | |
flatMap<KM, VM>( | |
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>, | |
context?: unknown | |
): OrderedMap<KM, VM>; | |
/** | |
* Returns a new OrderedMap with only the entries for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): OrderedMap<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new OrderedMap with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [OrderedMap<K, V>, OrderedMap<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* @see Collection.Keyed.flip | |
*/ | |
flip(): OrderedMap<V, K>; | |
} | |
/** | |
* A Collection of unique values with `O(log32 N)` adds and has. | |
* | |
* When iterating a Set, the entries will be (value, value) pairs. Iteration | |
* order of a Set is undefined, however is stable. Multiple iterations of the | |
* same Set will iterate in the same order. | |
* | |
* Set values, like Map keys, may be of any type. Equality is determined using | |
* `Immutable.is`, enabling Sets to uniquely include other Immutable | |
* collections, custom value types, and NaN. | |
*/ | |
namespace Set { | |
/** | |
* True if the provided value is a Set | |
*/ | |
function isSet(maybeSet: unknown): maybeSet is Set<unknown>; | |
/** | |
* Creates a new Set containing `values`. | |
*/ | |
function of<T>(...values: Array<T>): Set<T>; | |
/** | |
* `Set.fromKeys()` creates a new immutable Set containing the keys from | |
* this Collection or JavaScript Object. | |
*/ | |
function fromKeys<T>(iter: Collection<T, unknown>): Set<T>; | |
function fromKeys(obj: { [key: string]: unknown }): Set<string>; | |
/** | |
* `Set.intersect()` creates a new immutable Set that is the intersection of | |
* a collection of other sets. | |
* | |
* ```js | |
* const { Set } = require('immutable') | |
* const intersected = Set.intersect([ | |
* Set([ 'a', 'b', 'c' ]) | |
* Set([ 'c', 'a', 't' ]) | |
* ]) | |
* // Set [ "a", "c" ] | |
* ``` | |
*/ | |
function intersect<T>(sets: Iterable<Iterable<T>>): Set<T>; | |
/** | |
* `Set.union()` creates a new immutable Set that is the union of a | |
* collection of other sets. | |
* | |
* ```js | |
* const { Set } = require('immutable') | |
* const unioned = Set.union([ | |
* Set([ 'a', 'b', 'c' ]) | |
* Set([ 'c', 'a', 't' ]) | |
* ]) | |
* // Set [ "a", "b", "c", "t" ] | |
* ``` | |
*/ | |
function union<T>(sets: Iterable<Iterable<T>>): Set<T>; | |
} | |
/** | |
* Create a new immutable Set containing the values of the provided | |
* collection-like. | |
* | |
* Note: `Set` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
*/ | |
function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Set<T>; | |
interface Set<T> extends Collection.Set<T> { | |
/** | |
* The number of items in this Set. | |
*/ | |
readonly size: number; | |
// Persistent changes | |
/** | |
* Returns a new Set which also includes this value. | |
* | |
* Note: `add` can be used in `withMutations`. | |
*/ | |
add(value: T): this; | |
/** | |
* Returns a new Set which excludes this value. | |
* | |
* Note: `delete` can be used in `withMutations`. | |
* | |
* Note: `delete` **cannot** be safely used in IE8, use `remove` if | |
* supporting old browsers. | |
* | |
* @alias remove | |
*/ | |
delete(value: T): this; | |
remove(value: T): this; | |
/** | |
* Returns a new Set containing no values. | |
* | |
* Note: `clear` can be used in `withMutations`. | |
*/ | |
clear(): this; | |
/** | |
* Returns a Set including any value from `collections` that does not already | |
* exist in this Set. | |
* | |
* Note: `union` can be used in `withMutations`. | |
* @alias merge | |
* @alias concat | |
*/ | |
union<C>(...collections: Array<Iterable<C>>): Set<T | C>; | |
merge<C>(...collections: Array<Iterable<C>>): Set<T | C>; | |
concat<C>(...collections: Array<Iterable<C>>): Set<T | C>; | |
/** | |
* Returns a Set which has removed any values not also contained | |
* within `collections`. | |
* | |
* Note: `intersect` can be used in `withMutations`. | |
*/ | |
intersect(...collections: Array<Iterable<T>>): this; | |
/** | |
* Returns a Set excluding any values contained within `collections`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { OrderedSet } = require('immutable') | |
* OrderedSet([ 1, 2, 3 ]).subtract([1, 3]) | |
* // OrderedSet [2] | |
* ``` | |
* | |
* Note: `subtract` can be used in `withMutations`. | |
*/ | |
subtract(...collections: Array<Iterable<T>>): this; | |
// Transient changes | |
/** | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* mentions being safe to use in `withMutations`. | |
* | |
* @see `Map#withMutations` | |
*/ | |
withMutations(mutator: (mutable: this) => unknown): this; | |
/** | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* mentions being safe to use in `withMutations`. | |
* | |
* @see `Map#asMutable` | |
*/ | |
asMutable(): this; | |
/** | |
* @see `Map#wasAltered` | |
*/ | |
wasAltered(): boolean; | |
/** | |
* @see `Map#asImmutable` | |
*/ | |
asImmutable(): this; | |
// Sequence algorithms | |
/** | |
* Returns a new Set with values passed through a | |
* `mapper` function. | |
* | |
* Set([1,2]).map(x => 10 * x) | |
* // Set [10,20] | |
*/ | |
map<M>( | |
mapper: (value: T, key: T, iter: this) => M, | |
context?: unknown | |
): Set<M>; | |
/** | |
* Flat-maps the Set, returning a new Set. | |
* | |
* Similar to `set.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: T, iter: this) => Iterable<M>, | |
context?: unknown | |
): Set<M>; | |
/** | |
* Returns a new Set with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, key: T, iter: this) => value is F, | |
context?: unknown | |
): Set<F>; | |
filter( | |
predicate: (value: T, key: T, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Set with the values for which the `predicate` function | |
* returns false and another for which is returns true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, key: T, iter: this) => value is F, | |
context?: C | |
): [Set<T>, Set<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, key: T, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
} | |
/** | |
* A type of Set that has the additional guarantee that the iteration order of | |
* values will be the order in which they were `add`ed. | |
* | |
* The iteration behavior of OrderedSet is the same as native ES6 Set. | |
* | |
* Note that `OrderedSet` are more expensive than non-ordered `Set` and may | |
* consume more memory. `OrderedSet#add` is amortized O(log32 N), but not | |
* stable. | |
*/ | |
namespace OrderedSet { | |
/** | |
* True if the provided value is an OrderedSet. | |
*/ | |
function isOrderedSet(maybeOrderedSet: unknown): boolean; | |
/** | |
* Creates a new OrderedSet containing `values`. | |
*/ | |
function of<T>(...values: Array<T>): OrderedSet<T>; | |
/** | |
* `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing | |
* the keys from this Collection or JavaScript Object. | |
*/ | |
function fromKeys<T>(iter: Collection<T, unknown>): OrderedSet<T>; | |
function fromKeys(obj: { [key: string]: unknown }): OrderedSet<string>; | |
} | |
/** | |
* Create a new immutable OrderedSet containing the values of the provided | |
* collection-like. | |
* | |
* Note: `OrderedSet` is a factory function and not a class, and does not use | |
* the `new` keyword during construction. | |
*/ | |
function OrderedSet<T>( | |
collection?: Iterable<T> | ArrayLike<T> | |
): OrderedSet<T>; | |
interface OrderedSet<T> extends Set<T> { | |
/** | |
* The number of items in this OrderedSet. | |
*/ | |
readonly size: number; | |
/** | |
* Returns an OrderedSet including any value from `collections` that does | |
* not already exist in this OrderedSet. | |
* | |
* Note: `union` can be used in `withMutations`. | |
* @alias merge | |
* @alias concat | |
*/ | |
union<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>; | |
merge<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>; | |
concat<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>; | |
// Sequence algorithms | |
/** | |
* Returns a new Set with values passed through a | |
* `mapper` function. | |
* | |
* OrderedSet([ 1, 2 ]).map(x => 10 * x) | |
* // OrderedSet [10, 20] | |
*/ | |
map<M>( | |
mapper: (value: T, key: T, iter: this) => M, | |
context?: unknown | |
): OrderedSet<M>; | |
/** | |
* Flat-maps the OrderedSet, returning a new OrderedSet. | |
* | |
* Similar to `set.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: T, iter: this) => Iterable<M>, | |
context?: unknown | |
): OrderedSet<M>; | |
/** | |
* Returns a new OrderedSet with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, key: T, iter: this) => value is F, | |
context?: unknown | |
): OrderedSet<F>; | |
filter( | |
predicate: (value: T, key: T, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new OrderedSet with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, key: T, iter: this) => value is F, | |
context?: C | |
): [OrderedSet<T>, OrderedSet<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, key: T, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* Returns an OrderedSet of the same type "zipped" with the provided | |
* collections. | |
* | |
* Like `zipWith`, but using the default `zipper`: creating an `Array`. | |
* | |
* ```js | |
* const a = OrderedSet([ 1, 2, 3 ]) | |
* const b = OrderedSet([ 4, 5, 6 ]) | |
* const c = a.zip(b) | |
* // OrderedSet [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] | |
* ``` | |
*/ | |
zip<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>; | |
zip<U, V>( | |
other1: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): OrderedSet<[T, U, V]>; | |
zip( | |
...collections: Array<Collection<unknown, unknown>> | |
): OrderedSet<unknown>; | |
/** | |
* Returns a OrderedSet of the same type "zipped" with the provided | |
* collections. | |
* | |
* Unlike `zip`, `zipAll` continues zipping until the longest collection is | |
* exhausted. Missing values from shorter collections are filled with `undefined`. | |
* | |
* ```js | |
* const a = OrderedSet([ 1, 2 ]); | |
* const b = OrderedSet([ 3, 4, 5 ]); | |
* const c = a.zipAll(b); // OrderedSet [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ] | |
* ``` | |
* | |
* Note: Since zipAll will return a collection as large as the largest | |
* input, some results may contain undefined values. TypeScript cannot | |
* account for these without cases (as of v2.5). | |
*/ | |
zipAll<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>; | |
zipAll<U, V>( | |
other1: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): OrderedSet<[T, U, V]>; | |
zipAll( | |
...collections: Array<Collection<unknown, unknown>> | |
): OrderedSet<unknown>; | |
/** | |
* Returns an OrderedSet of the same type "zipped" with the provided | |
* collections by using a custom `zipper` function. | |
* | |
* @see Seq.Indexed.zipWith | |
*/ | |
zipWith<U, Z>( | |
zipper: (value: T, otherValue: U) => Z, | |
otherCollection: Collection<unknown, U> | |
): OrderedSet<Z>; | |
zipWith<U, V, Z>( | |
zipper: (value: T, otherValue: U, thirdValue: V) => Z, | |
otherCollection: Collection<unknown, U>, | |
thirdCollection: Collection<unknown, V> | |
): OrderedSet<Z>; | |
zipWith<Z>( | |
zipper: (...values: Array<unknown>) => Z, | |
...collections: Array<Collection<unknown, unknown>> | |
): OrderedSet<Z>; | |
} | |
/** | |
* Stacks are indexed collections which support very efficient O(1) addition | |
* and removal from the front using `unshift(v)` and `shift()`. | |
* | |
* For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but | |
* be aware that they also operate on the front of the list, unlike List or | |
* a JavaScript Array. | |
* | |
* Note: `reverse()` or any inherent reverse traversal (`reduceRight`, | |
* `lastIndexOf`, etc.) is not efficient with a Stack. | |
* | |
* Stack is implemented with a Single-Linked List. | |
*/ | |
namespace Stack { | |
/** | |
* True if the provided value is a Stack | |
*/ | |
function isStack(maybeStack: unknown): maybeStack is Stack<unknown>; | |
/** | |
* Creates a new Stack containing `values`. | |
*/ | |
function of<T>(...values: Array<T>): Stack<T>; | |
} | |
/** | |
* Create a new immutable Stack containing the values of the provided | |
* collection-like. | |
* | |
* The iteration order of the provided collection is preserved in the | |
* resulting `Stack`. | |
* | |
* Note: `Stack` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
*/ | |
function Stack<T>(collection?: Iterable<T> | ArrayLike<T>): Stack<T>; | |
interface Stack<T> extends Collection.Indexed<T> { | |
/** | |
* The number of items in this Stack. | |
*/ | |
readonly size: number; | |
// Reading values | |
/** | |
* Alias for `Stack.first()`. | |
*/ | |
peek(): T | undefined; | |
// Persistent changes | |
/** | |
* Returns a new Stack with 0 size and no values. | |
* | |
* Note: `clear` can be used in `withMutations`. | |
*/ | |
clear(): Stack<T>; | |
/** | |
* Returns a new Stack with the provided `values` prepended, shifting other | |
* values ahead to higher indices. | |
* | |
* This is very efficient for Stack. | |
* | |
* Note: `unshift` can be used in `withMutations`. | |
*/ | |
unshift(...values: Array<T>): Stack<T>; | |
/** | |
* Like `Stack#unshift`, but accepts a collection rather than varargs. | |
* | |
* Note: `unshiftAll` can be used in `withMutations`. | |
*/ | |
unshiftAll(iter: Iterable<T>): Stack<T>; | |
/** | |
* Returns a new Stack with a size ones less than this Stack, excluding | |
* the first item in this Stack, shifting all other values to a lower index. | |
* | |
* Note: this differs from `Array#shift` because it returns a new | |
* Stack rather than the removed value. Use `first()` or `peek()` to get the | |
* first value in this Stack. | |
* | |
* Note: `shift` can be used in `withMutations`. | |
*/ | |
shift(): Stack<T>; | |
/** | |
* Alias for `Stack#unshift` and is not equivalent to `List#push`. | |
*/ | |
push(...values: Array<T>): Stack<T>; | |
/** | |
* Alias for `Stack#unshiftAll`. | |
*/ | |
pushAll(iter: Iterable<T>): Stack<T>; | |
/** | |
* Alias for `Stack#shift` and is not equivalent to `List#pop`. | |
*/ | |
pop(): Stack<T>; | |
// Transient changes | |
/** | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* mentions being safe to use in `withMutations`. | |
* | |
* @see `Map#withMutations` | |
*/ | |
withMutations(mutator: (mutable: this) => unknown): this; | |
/** | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Check the documentation for each method to see if it | |
* mentions being safe to use in `withMutations`. | |
* | |
* @see `Map#asMutable` | |
*/ | |
asMutable(): this; | |
/** | |
* @see `Map#wasAltered` | |
*/ | |
wasAltered(): boolean; | |
/** | |
* @see `Map#asImmutable` | |
*/ | |
asImmutable(): this; | |
// Sequence algorithms | |
/** | |
* Returns a new Stack with other collections concatenated to this one. | |
*/ | |
concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): Stack<T | C>; | |
/** | |
* Returns a new Stack with values passed through a | |
* `mapper` function. | |
* | |
* Stack([ 1, 2 ]).map(x => 10 * x) | |
* // Stack [ 10, 20 ] | |
* | |
* Note: `map()` always returns a new instance, even if it produced the same | |
* value at every step. | |
*/ | |
map<M>( | |
mapper: (value: T, key: number, iter: this) => M, | |
context?: unknown | |
): Stack<M>; | |
/** | |
* Flat-maps the Stack, returning a new Stack. | |
* | |
* Similar to `stack.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: number, iter: this) => Iterable<M>, | |
context?: unknown | |
): Stack<M>; | |
/** | |
* Returns a new Set with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, index: number, iter: this) => value is F, | |
context?: unknown | |
): Set<F>; | |
filter( | |
predicate: (value: T, index: number, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a Stack "zipped" with the provided collections. | |
* | |
* Like `zipWith`, but using the default `zipper`: creating an `Array`. | |
* | |
* ```js | |
* const a = Stack([ 1, 2, 3 ]); | |
* const b = Stack([ 4, 5, 6 ]); | |
* const c = a.zip(b); // Stack [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] | |
* ``` | |
*/ | |
zip<U>(other: Collection<unknown, U>): Stack<[T, U]>; | |
zip<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Stack<[T, U, V]>; | |
zip(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>; | |
/** | |
* Returns a Stack "zipped" with the provided collections. | |
* | |
* Unlike `zip`, `zipAll` continues zipping until the longest collection is | |
* exhausted. Missing values from shorter collections are filled with `undefined`. | |
* | |
* ```js | |
* const a = Stack([ 1, 2 ]); | |
* const b = Stack([ 3, 4, 5 ]); | |
* const c = a.zipAll(b); // Stack [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ] | |
* ``` | |
* | |
* Note: Since zipAll will return a collection as large as the largest | |
* input, some results may contain undefined values. TypeScript cannot | |
* account for these without cases (as of v2.5). | |
*/ | |
zipAll<U>(other: Collection<unknown, U>): Stack<[T, U]>; | |
zipAll<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Stack<[T, U, V]>; | |
zipAll(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>; | |
/** | |
* Returns a Stack "zipped" with the provided collections by using a | |
* custom `zipper` function. | |
* | |
* ```js | |
* const a = Stack([ 1, 2, 3 ]); | |
* const b = Stack([ 4, 5, 6 ]); | |
* const c = a.zipWith((a, b) => a + b, b); | |
* // Stack [ 5, 7, 9 ] | |
* ``` | |
*/ | |
zipWith<U, Z>( | |
zipper: (value: T, otherValue: U) => Z, | |
otherCollection: Collection<unknown, U> | |
): Stack<Z>; | |
zipWith<U, V, Z>( | |
zipper: (value: T, otherValue: U, thirdValue: V) => Z, | |
otherCollection: Collection<unknown, U>, | |
thirdCollection: Collection<unknown, V> | |
): Stack<Z>; | |
zipWith<Z>( | |
zipper: (...values: Array<unknown>) => Z, | |
...collections: Array<Collection<unknown, unknown>> | |
): Stack<Z>; | |
} | |
/** | |
* Returns a Seq.Indexed of numbers from `start` (inclusive) to `end` | |
* (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to | |
* infinity. When `start` is equal to `end`, returns empty range. | |
* | |
* Note: `Range` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
* | |
* ```js | |
* const { Range } = require('immutable') | |
* Range() // [ 0, 1, 2, 3, ... ] | |
* Range(10) // [ 10, 11, 12, 13, ... ] | |
* Range(10, 15) // [ 10, 11, 12, 13, 14 ] | |
* Range(10, 30, 5) // [ 10, 15, 20, 25 ] | |
* Range(30, 10, 5) // [ 30, 25, 20, 15 ] | |
* Range(30, 30, 5) // [] | |
* ``` | |
*/ | |
function Range( | |
start?: number, | |
end?: number, | |
step?: number | |
): Seq.Indexed<number>; | |
/** | |
* Returns a Seq.Indexed of `value` repeated `times` times. When `times` is | |
* not defined, returns an infinite `Seq` of `value`. | |
* | |
* Note: `Repeat` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
* | |
* ```js | |
* const { Repeat } = require('immutable') | |
* Repeat('foo') // [ 'foo', 'foo', 'foo', ... ] | |
* Repeat('bar', 4) // [ 'bar', 'bar', 'bar', 'bar' ] | |
* ``` | |
*/ | |
function Repeat<T>(value: T, times?: number): Seq.Indexed<T>; | |
/** | |
* A record is similar to a JS object, but enforces a specific set of allowed | |
* string keys, and has default values. | |
* | |
* The `Record()` function produces new Record Factories, which when called | |
* create Record instances. | |
* | |
* ```js | |
* const { Record } = require('immutable') | |
* const ABRecord = Record({ a: 1, b: 2 }) | |
* const myRecord = ABRecord({ b: 3 }) | |
* ``` | |
* | |
* Records always have a value for the keys they define. `remove`ing a key | |
* from a record simply resets it to the default value for that key. | |
* | |
* ```js | |
* myRecord.get('a') // 1 | |
* myRecord.get('b') // 3 | |
* const myRecordWithoutB = myRecord.remove('b') | |
* myRecordWithoutB.get('b') // 2 | |
* ``` | |
* | |
* Values provided to the constructor not found in the Record type will | |
* be ignored. For example, in this case, ABRecord is provided a key "x" even | |
* though only "a" and "b" have been defined. The value for "x" will be | |
* ignored for this record. | |
* | |
* ```js | |
* const myRecord = ABRecord({ b: 3, x: 10 }) | |
* myRecord.get('x') // undefined | |
* ``` | |
* | |
* Because Records have a known set of string keys, property get access works | |
* as expected, however property sets will throw an Error. | |
* | |
* Note: IE8 does not support property access. Only use `get()` when | |
* supporting IE8. | |
* | |
* ```js | |
* myRecord.b // 3 | |
* myRecord.b = 5 // throws Error | |
* ``` | |
* | |
* Record Types can be extended as well, allowing for custom methods on your | |
* Record. This is not a common pattern in functional environments, but is in | |
* many JS programs. | |
* | |
* However Record Types are more restricted than typical JavaScript classes. | |
* They do not use a class constructor, which also means they cannot use | |
* class properties (since those are technically part of a constructor). | |
* | |
* While Record Types can be syntactically created with the JavaScript `class` | |
* form, the resulting Record function is actually a factory function, not a | |
* class constructor. Even though Record Types are not classes, JavaScript | |
* currently requires the use of `new` when creating new Record instances if | |
* they are defined as a `class`. | |
* | |
* ``` | |
* class ABRecord extends Record({ a: 1, b: 2 }) { | |
* getAB() { | |
* return this.a + this.b; | |
* } | |
* } | |
* | |
* var myRecord = new ABRecord({b: 3}) | |
* myRecord.getAB() // 4 | |
* ``` | |
* | |
* | |
* **Flow Typing Records:** | |
* | |
* Immutable.js exports two Flow types designed to make it easier to use | |
* Records with flow typed code, `RecordOf<TProps>` and `RecordFactory<TProps>`. | |
* | |
* When defining a new kind of Record factory function, use a flow type that | |
* describes the values the record contains along with `RecordFactory<TProps>`. | |
* To type instances of the Record (which the factory function returns), | |
* use `RecordOf<TProps>`. | |
* | |
* Typically, new Record definitions will export both the Record factory | |
* function as well as the Record instance type for use in other code. | |
* | |
* ```js | |
* import type { RecordFactory, RecordOf } from 'immutable'; | |
* | |
* // Use RecordFactory<TProps> for defining new Record factory functions. | |
* type Point3DProps = { x: number, y: number, z: number }; | |
* const defaultValues: Point3DProps = { x: 0, y: 0, z: 0 }; | |
* const makePoint3D: RecordFactory<Point3DProps> = Record(defaultValues); | |
* export makePoint3D; | |
* | |
* // Use RecordOf<T> for defining new instances of that Record. | |
* export type Point3D = RecordOf<Point3DProps>; | |
* const some3DPoint: Point3D = makePoint3D({ x: 10, y: 20, z: 30 }); | |
* ``` | |
* | |
* **Flow Typing Record Subclasses:** | |
* | |
* Records can be subclassed as a means to add additional methods to Record | |
* instances. This is generally discouraged in favor of a more functional API, | |
* since Subclasses have some minor overhead. However the ability to create | |
* a rich API on Record types can be quite valuable. | |
* | |
* When using Flow to type Subclasses, do not use `RecordFactory<TProps>`, | |
* instead apply the props type when subclassing: | |
* | |
* ```js | |
* type PersonProps = {name: string, age: number}; | |
* const defaultValues: PersonProps = {name: 'Aristotle', age: 2400}; | |
* const PersonRecord = Record(defaultValues); | |
* class Person extends PersonRecord<PersonProps> { | |
* getName(): string { | |
* return this.get('name') | |
* } | |
* | |
* setName(name: string): this { | |
* return this.set('name', name); | |
* } | |
* } | |
* ``` | |
* | |
* **Choosing Records vs plain JavaScript objects** | |
* | |
* Records offer a persistently immutable alternative to plain JavaScript | |
* objects, however they're not required to be used within Immutable.js | |
* collections. In fact, the deep-access and deep-updating functions | |
* like `getIn()` and `setIn()` work with plain JavaScript Objects as well. | |
* | |
* Deciding to use Records or Objects in your application should be informed | |
* by the tradeoffs and relative benefits of each: | |
* | |
* - *Runtime immutability*: plain JS objects may be carefully treated as | |
* immutable, however Record instances will *throw* if attempted to be | |
* mutated directly. Records provide this additional guarantee, however at | |
* some marginal runtime cost. While JS objects are mutable by nature, the | |
* use of type-checking tools like [Flow](https://medium.com/@gcanti/immutability-with-flow-faa050a1aef4) | |
* can help gain confidence in code written to favor immutability. | |
* | |
* - *Value equality*: Records use value equality when compared with `is()` | |
* or `record.equals()`. That is, two Records with the same keys and values | |
* are equal. Plain objects use *reference equality*. Two objects with the | |
* same keys and values are not equal since they are different objects. | |
* This is important to consider when using objects as keys in a `Map` or | |
* values in a `Set`, which use equality when retrieving values. | |
* | |
* - *API methods*: Records have a full featured API, with methods like | |
* `.getIn()`, and `.equals()`. These can make working with these values | |
* easier, but comes at the cost of not allowing keys with those names. | |
* | |
* - *Default values*: Records provide default values for every key, which | |
* can be useful when constructing Records with often unchanging values. | |
* However default values can make using Flow and TypeScript more laborious. | |
* | |
* - *Serialization*: Records use a custom internal representation to | |
* efficiently store and update their values. Converting to and from this | |
* form isn't free. If converting Records to plain objects is common, | |
* consider sticking with plain objects to begin with. | |
*/ | |
namespace Record { | |
/** | |
* True if `maybeRecord` is an instance of a Record. | |
*/ | |
function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>; | |
/** | |
* Records allow passing a second parameter to supply a descriptive name | |
* that appears when converting a Record to a string or in any error | |
* messages. A descriptive name for any record can be accessed by using this | |
* method. If one was not provided, the string "Record" is returned. | |
* | |
* ```js | |
* const { Record } = require('immutable') | |
* const Person = Record({ | |
* name: null | |
* }, 'Person') | |
* | |
* var me = Person({ name: 'My Name' }) | |
* me.toString() // "Person { "name": "My Name" }" | |
* Record.getDescriptiveName(me) // "Person" | |
* ``` | |
*/ | |
function getDescriptiveName(record: Record<any>): string; | |
/** | |
* A Record.Factory is created by the `Record()` function. Record instances | |
* are created by passing it some of the accepted values for that Record | |
* type: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Record } = require('immutable')" } | |
* --> | |
* ```js | |
* // makePerson is a Record Factory function | |
* const makePerson = Record({ name: null, favoriteColor: 'unknown' }); | |
* | |
* // alan is a Record instance | |
* const alan = makePerson({ name: 'Alan' }); | |
* ``` | |
* | |
* Note that Record Factories return `Record<TProps> & Readonly<TProps>`, | |
* this allows use of both the Record instance API, and direct property | |
* access on the resulting instances: | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Record } = require('immutable');const makePerson = Record({ name: null, favoriteColor: 'unknown' });const alan = makePerson({ name: 'Alan' });" } | |
* --> | |
* ```js | |
* // Use the Record API | |
* console.log('Record API: ' + alan.get('name')) | |
* | |
* // Or direct property access (Readonly) | |
* console.log('property access: ' + alan.name) | |
* ``` | |
* | |
* **Flow Typing Records:** | |
* | |
* Use the `RecordFactory<TProps>` Flow type to get high quality type checking of | |
* Records: | |
* | |
* ```js | |
* import type { RecordFactory, RecordOf } from 'immutable'; | |
* | |
* // Use RecordFactory<TProps> for defining new Record factory functions. | |
* type PersonProps = { name: ?string, favoriteColor: string }; | |
* const makePerson: RecordFactory<PersonProps> = Record({ name: null, favoriteColor: 'unknown' }); | |
* | |
* // Use RecordOf<T> for defining new instances of that Record. | |
* type Person = RecordOf<PersonProps>; | |
* const alan: Person = makePerson({ name: 'Alan' }); | |
* ``` | |
*/ | |
namespace Factory {} | |
interface Factory<TProps extends object> { | |
(values?: Partial<TProps> | Iterable<[string, unknown]>): Record<TProps> & | |
Readonly<TProps>; | |
new ( | |
values?: Partial<TProps> | Iterable<[string, unknown]> | |
): Record<TProps> & Readonly<TProps>; | |
/** | |
* The name provided to `Record(values, name)` can be accessed with | |
* `displayName`. | |
*/ | |
displayName: string; | |
} | |
function Factory<TProps extends object>( | |
values?: Partial<TProps> | Iterable<[string, unknown]> | |
): Record<TProps> & Readonly<TProps>; | |
} | |
/** | |
* Unlike other types in Immutable.js, the `Record()` function creates a new | |
* Record Factory, which is a function that creates Record instances. | |
* | |
* See above for examples of using `Record()`. | |
* | |
* Note: `Record` is a factory function and not a class, and does not use the | |
* `new` keyword during construction. | |
*/ | |
function Record<TProps extends object>( | |
defaultValues: TProps, | |
name?: string | |
): Record.Factory<TProps>; | |
interface Record<TProps extends object> { | |
// Reading values | |
has(key: string): key is keyof TProps & string; | |
/** | |
* Returns the value associated with the provided key, which may be the | |
* default value defined when creating the Record factory function. | |
* | |
* If the requested key is not defined by this Record type, then | |
* notSetValue will be returned if provided. Note that this scenario would | |
* produce an error when using Flow or TypeScript. | |
*/ | |
get<K extends keyof TProps>(key: K, notSetValue?: unknown): TProps[K]; | |
get<T>(key: string, notSetValue: T): T; | |
// Reading deep values | |
hasIn(keyPath: Iterable<unknown>): boolean; | |
getIn(keyPath: Iterable<unknown>): unknown; | |
// Value equality | |
equals(other: unknown): boolean; | |
hashCode(): number; | |
// Persistent changes | |
set<K extends keyof TProps>(key: K, value: TProps[K]): this; | |
update<K extends keyof TProps>( | |
key: K, | |
updater: (value: TProps[K]) => TProps[K] | |
): this; | |
merge( | |
...collections: Array<Partial<TProps> | Iterable<[string, unknown]>> | |
): this; | |
mergeDeep( | |
...collections: Array<Partial<TProps> | Iterable<[string, unknown]>> | |
): this; | |
mergeWith( | |
merger: (oldVal: unknown, newVal: unknown, key: keyof TProps) => unknown, | |
...collections: Array<Partial<TProps> | Iterable<[string, unknown]>> | |
): this; | |
mergeDeepWith( | |
merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown, | |
...collections: Array<Partial<TProps> | Iterable<[string, unknown]>> | |
): this; | |
/** | |
* Returns a new instance of this Record type with the value for the | |
* specific key set to its default value. | |
* | |
* @alias remove | |
*/ | |
delete<K extends keyof TProps>(key: K): this; | |
remove<K extends keyof TProps>(key: K): this; | |
/** | |
* Returns a new instance of this Record type with all values set | |
* to their default values. | |
*/ | |
clear(): this; | |
// Deep persistent changes | |
setIn(keyPath: Iterable<unknown>, value: unknown): this; | |
updateIn( | |
keyPath: Iterable<unknown>, | |
updater: (value: unknown) => unknown | |
): this; | |
mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this; | |
mergeDeepIn( | |
keyPath: Iterable<unknown>, | |
...collections: Array<unknown> | |
): this; | |
/** | |
* @alias removeIn | |
*/ | |
deleteIn(keyPath: Iterable<unknown>): this; | |
removeIn(keyPath: Iterable<unknown>): this; | |
// Conversion to JavaScript types | |
/** | |
* Deeply converts this Record to equivalent native JavaScript Object. | |
* | |
* Note: This method may not be overridden. Objects with custom | |
* serialization to plain JS may override toJSON() instead. | |
*/ | |
toJS(): DeepCopy<TProps>; | |
/** | |
* Shallowly converts this Record to equivalent native JavaScript Object. | |
*/ | |
toJSON(): TProps; | |
/** | |
* Shallowly converts this Record to equivalent JavaScript Object. | |
*/ | |
toObject(): TProps; | |
// Transient changes | |
/** | |
* Note: Not all methods can be used on a mutable collection or within | |
* `withMutations`! Only `set` may be used mutatively. | |
* | |
* @see `Map#withMutations` | |
*/ | |
withMutations(mutator: (mutable: this) => unknown): this; | |
/** | |
* @see `Map#asMutable` | |
*/ | |
asMutable(): this; | |
/** | |
* @see `Map#wasAltered` | |
*/ | |
wasAltered(): boolean; | |
/** | |
* @see `Map#asImmutable` | |
*/ | |
asImmutable(): this; | |
// Sequence algorithms | |
toSeq(): Seq.Keyed<keyof TProps, TProps[keyof TProps]>; | |
[Symbol.iterator](): IterableIterator<[keyof TProps, TProps[keyof TProps]]>; | |
} | |
/** | |
* RecordOf<T> is used in TypeScript to define interfaces expecting an | |
* instance of record with type T. | |
* | |
* This is equivalent to an instance of a record created by a Record Factory. | |
*/ | |
type RecordOf<TProps extends object> = Record<TProps> & Readonly<TProps>; | |
/** | |
* `Seq` describes a lazy operation, allowing them to efficiently chain | |
* use of all the higher-order collection methods (such as `map` and `filter`) | |
* by not creating intermediate collections. | |
* | |
* **Seq is immutable** — Once a Seq is created, it cannot be | |
* changed, appended to, rearranged or otherwise modified. Instead, any | |
* mutative method called on a `Seq` will return a new `Seq`. | |
* | |
* **Seq is lazy** — `Seq` does as little work as necessary to respond to any | |
* method call. Values are often created during iteration, including implicit | |
* iteration when reducing or converting to a concrete data structure such as | |
* a `List` or JavaScript `Array`. | |
* | |
* For example, the following performs no work, because the resulting | |
* `Seq`'s values are never iterated: | |
* | |
* ```js | |
* const { Seq } = require('immutable') | |
* const oddSquares = Seq([ 1, 2, 3, 4, 5, 6, 7, 8 ]) | |
* .filter(x => x % 2 !== 0) | |
* .map(x => x * x) | |
* ``` | |
* | |
* Once the `Seq` is used, it performs only the work necessary. In this | |
* example, no intermediate arrays are ever created, filter is called three | |
* times, and map is only called once: | |
* | |
* ```js | |
* oddSquares.get(1); // 9 | |
* ``` | |
* | |
* Any collection can be converted to a lazy Seq with `Seq()`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const map = Map({ a: 1, b: 2, c: 3 }) | |
* const lazySeq = Seq(map) | |
* ``` | |
* | |
* `Seq` allows for the efficient chaining of operations, allowing for the | |
* expression of logic that can otherwise be very tedious: | |
* | |
* ```js | |
* lazySeq | |
* .flip() | |
* .map(key => key.toUpperCase()) | |
* .flip() | |
* // Seq { A: 1, B: 1, C: 1 } | |
* ``` | |
* | |
* As well as expressing logic that would otherwise seem memory or time | |
* limited, for example `Range` is a special kind of Lazy sequence. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Range } = require('immutable') | |
* Range(1, Infinity) | |
* .skip(1000) | |
* .map(n => -n) | |
* .filter(n => n % 2 === 0) | |
* .take(2) | |
* .reduce((r, n) => r * n, 1) | |
* // 1006008 | |
* ``` | |
* | |
* Seq is often used to provide a rich collection API to JavaScript Object. | |
* | |
* ```js | |
* Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject(); | |
* // { x: 0, y: 2, z: 4 } | |
* ``` | |
*/ | |
namespace Seq { | |
/** | |
* True if `maybeSeq` is a Seq, it is not backed by a concrete | |
* structure such as Map, List, or Set. | |
*/ | |
function isSeq( | |
maybeSeq: unknown | |
): maybeSeq is | |
| Seq.Indexed<unknown> | |
| Seq.Keyed<unknown, unknown> | |
| Seq.Set<unknown>; | |
/** | |
* `Seq` which represents key-value pairs. | |
*/ | |
namespace Keyed {} | |
/** | |
* Always returns a Seq.Keyed, if input is not keyed, expects an | |
* collection of [K, V] tuples. | |
* | |
* Note: `Seq.Keyed` is a conversion function and not a class, and does not | |
* use the `new` keyword during construction. | |
*/ | |
function Keyed<K, V>(collection?: Iterable<[K, V]>): Seq.Keyed<K, V>; | |
function Keyed<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>; | |
interface Keyed<K, V> extends Seq<K, V>, Collection.Keyed<K, V> { | |
/** | |
* Deeply converts this Keyed Seq to equivalent native JavaScript Object. | |
* | |
* Converts keys to Strings. | |
*/ | |
toJS(): { [key in string | number | symbol]: DeepCopy<V> }; | |
/** | |
* Shallowly converts this Keyed Seq to equivalent native JavaScript Object. | |
* | |
* Converts keys to Strings. | |
*/ | |
toJSON(): { [key in string | number | symbol]: V }; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<[K, V]>; | |
/** | |
* Returns itself | |
*/ | |
toSeq(): this; | |
/** | |
* Returns a new Seq with other collections concatenated to this one. | |
* | |
* All entries will be present in the resulting Seq, even if they | |
* have the same key. | |
*/ | |
concat<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): Seq.Keyed<K | KC, V | VC>; | |
concat<C>( | |
...collections: Array<{ [key: string]: C }> | |
): Seq.Keyed<K | string, V | C>; | |
/** | |
* Returns a new Seq.Keyed with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Seq } = require('immutable') | |
* Seq.Keyed({ a: 1, b: 2 }).map(x => 10 * x) | |
* // Seq { "a": 10, "b": 20 } | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Seq.Keyed<K, M>; | |
/** | |
* @see Collection.Keyed.mapKeys | |
*/ | |
mapKeys<M>( | |
mapper: (key: K, value: V, iter: this) => M, | |
context?: unknown | |
): Seq.Keyed<M, V>; | |
/** | |
* @see Collection.Keyed.mapEntries | |
*/ | |
mapEntries<KM, VM>( | |
mapper: ( | |
entry: [K, V], | |
index: number, | |
iter: this | |
) => [KM, VM] | undefined, | |
context?: unknown | |
): Seq.Keyed<KM, VM>; | |
/** | |
* Flat-maps the Seq, returning a Seq of the same type. | |
* | |
* Similar to `seq.map(...).flatten(true)`. | |
*/ | |
flatMap<KM, VM>( | |
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>, | |
context?: unknown | |
): Seq.Keyed<KM, VM>; | |
/** | |
* Returns a new Seq with only the entries for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): Seq.Keyed<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new keyed Seq with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [Seq.Keyed<K, V>, Seq.Keyed<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* @see Collection.Keyed.flip | |
*/ | |
flip(): Seq.Keyed<V, K>; | |
[Symbol.iterator](): IterableIterator<[K, V]>; | |
} | |
/** | |
* `Seq` which represents an ordered indexed list of values. | |
*/ | |
namespace Indexed { | |
/** | |
* Provides an Seq.Indexed of the values provided. | |
*/ | |
function of<T>(...values: Array<T>): Seq.Indexed<T>; | |
} | |
/** | |
* Always returns Seq.Indexed, discarding associated keys and | |
* supplying incrementing indices. | |
* | |
* Note: `Seq.Indexed` is a conversion function and not a class, and does | |
* not use the `new` keyword during construction. | |
*/ | |
function Indexed<T>( | |
collection?: Iterable<T> | ArrayLike<T> | |
): Seq.Indexed<T>; | |
interface Indexed<T> extends Seq<number, T>, Collection.Indexed<T> { | |
/** | |
* Deeply converts this Indexed Seq to equivalent native JavaScript Array. | |
*/ | |
toJS(): Array<DeepCopy<T>>; | |
/** | |
* Shallowly converts this Indexed Seq to equivalent native JavaScript Array. | |
*/ | |
toJSON(): Array<T>; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<T>; | |
/** | |
* Returns itself | |
*/ | |
toSeq(): this; | |
/** | |
* Returns a new Seq with other collections concatenated to this one. | |
*/ | |
concat<C>( | |
...valuesOrCollections: Array<Iterable<C> | C> | |
): Seq.Indexed<T | C>; | |
/** | |
* Returns a new Seq.Indexed with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Seq } = require('immutable') | |
* Seq.Indexed([ 1, 2 ]).map(x => 10 * x) | |
* // Seq [ 10, 20 ] | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: T, key: number, iter: this) => M, | |
context?: unknown | |
): Seq.Indexed<M>; | |
/** | |
* Flat-maps the Seq, returning a a Seq of the same type. | |
* | |
* Similar to `seq.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: number, iter: this) => Iterable<M>, | |
context?: unknown | |
): Seq.Indexed<M>; | |
/** | |
* Returns a new Seq with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, index: number, iter: this) => value is F, | |
context?: unknown | |
): Seq.Indexed<F>; | |
filter( | |
predicate: (value: T, index: number, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new indexed Seq with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, index: number, iter: this) => value is F, | |
context?: C | |
): [Seq.Indexed<T>, Seq.Indexed<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, index: number, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* Returns a Seq "zipped" with the provided collections. | |
* | |
* Like `zipWith`, but using the default `zipper`: creating an `Array`. | |
* | |
* ```js | |
* const a = Seq([ 1, 2, 3 ]); | |
* const b = Seq([ 4, 5, 6 ]); | |
* const c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] | |
* ``` | |
*/ | |
zip<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>; | |
zip<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Seq.Indexed<[T, U, V]>; | |
zip( | |
...collections: Array<Collection<unknown, unknown>> | |
): Seq.Indexed<unknown>; | |
/** | |
* Returns a Seq "zipped" with the provided collections. | |
* | |
* Unlike `zip`, `zipAll` continues zipping until the longest collection is | |
* exhausted. Missing values from shorter collections are filled with `undefined`. | |
* | |
* ```js | |
* const a = Seq([ 1, 2 ]); | |
* const b = Seq([ 3, 4, 5 ]); | |
* const c = a.zipAll(b); // Seq [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ] | |
* ``` | |
*/ | |
zipAll<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>; | |
zipAll<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Seq.Indexed<[T, U, V]>; | |
zipAll( | |
...collections: Array<Collection<unknown, unknown>> | |
): Seq.Indexed<unknown>; | |
/** | |
* Returns a Seq "zipped" with the provided collections by using a | |
* custom `zipper` function. | |
* | |
* ```js | |
* const a = Seq([ 1, 2, 3 ]); | |
* const b = Seq([ 4, 5, 6 ]); | |
* const c = a.zipWith((a, b) => a + b, b); | |
* // Seq [ 5, 7, 9 ] | |
* ``` | |
*/ | |
zipWith<U, Z>( | |
zipper: (value: T, otherValue: U) => Z, | |
otherCollection: Collection<unknown, U> | |
): Seq.Indexed<Z>; | |
zipWith<U, V, Z>( | |
zipper: (value: T, otherValue: U, thirdValue: V) => Z, | |
otherCollection: Collection<unknown, U>, | |
thirdCollection: Collection<unknown, V> | |
): Seq.Indexed<Z>; | |
zipWith<Z>( | |
zipper: (...values: Array<unknown>) => Z, | |
...collections: Array<Collection<unknown, unknown>> | |
): Seq.Indexed<Z>; | |
[Symbol.iterator](): IterableIterator<T>; | |
} | |
/** | |
* `Seq` which represents a set of values. | |
* | |
* Because `Seq` are often lazy, `Seq.Set` does not provide the same guarantee | |
* of value uniqueness as the concrete `Set`. | |
*/ | |
namespace Set { | |
/** | |
* Returns a Seq.Set of the provided values | |
*/ | |
function of<T>(...values: Array<T>): Seq.Set<T>; | |
} | |
/** | |
* Always returns a Seq.Set, discarding associated indices or keys. | |
* | |
* Note: `Seq.Set` is a conversion function and not a class, and does not | |
* use the `new` keyword during construction. | |
*/ | |
function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Seq.Set<T>; | |
interface Set<T> extends Seq<T, T>, Collection.Set<T> { | |
/** | |
* Deeply converts this Set Seq to equivalent native JavaScript Array. | |
*/ | |
toJS(): Array<DeepCopy<T>>; | |
/** | |
* Shallowly converts this Set Seq to equivalent native JavaScript Array. | |
*/ | |
toJSON(): Array<T>; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<T>; | |
/** | |
* Returns itself | |
*/ | |
toSeq(): this; | |
/** | |
* Returns a new Seq with other collections concatenated to this one. | |
* | |
* All entries will be present in the resulting Seq, even if they | |
* are duplicates. | |
*/ | |
concat<U>(...collections: Array<Iterable<U>>): Seq.Set<T | U>; | |
/** | |
* Returns a new Seq.Set with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* Seq.Set([ 1, 2 ]).map(x => 10 * x) | |
* // Seq { 10, 20 } | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: T, key: T, iter: this) => M, | |
context?: unknown | |
): Seq.Set<M>; | |
/** | |
* Flat-maps the Seq, returning a Seq of the same type. | |
* | |
* Similar to `seq.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: T, iter: this) => Iterable<M>, | |
context?: unknown | |
): Seq.Set<M>; | |
/** | |
* Returns a new Seq with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, key: T, iter: this) => value is F, | |
context?: unknown | |
): Seq.Set<F>; | |
filter( | |
predicate: (value: T, key: T, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new set Seq with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, key: T, iter: this) => value is F, | |
context?: C | |
): [Seq.Set<T>, Seq.Set<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, key: T, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
[Symbol.iterator](): IterableIterator<T>; | |
} | |
} | |
/** | |
* Creates a Seq. | |
* | |
* Returns a particular kind of `Seq` based on the input. | |
* | |
* * If a `Seq`, that same `Seq`. | |
* * If an `Collection`, a `Seq` of the same kind (Keyed, Indexed, or Set). | |
* * If an Array-like, an `Seq.Indexed`. | |
* * If an Iterable Object, an `Seq.Indexed`. | |
* * If an Object, a `Seq.Keyed`. | |
* | |
* Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`, | |
* which is usually not what you want. You should turn your Iterator Object into | |
* an iterable object by defining a Symbol.iterator (or @@iterator) method which | |
* returns `this`. | |
* | |
* Note: `Seq` is a conversion function and not a class, and does not use the | |
* `new` keyword during construction. | |
*/ | |
function Seq<S extends Seq<unknown, unknown>>(seq: S): S; | |
function Seq<K, V>(collection: Collection.Keyed<K, V>): Seq.Keyed<K, V>; | |
function Seq<T>(collection: Collection.Set<T>): Seq.Set<T>; | |
function Seq<T>( | |
collection: Collection.Indexed<T> | Iterable<T> | ArrayLike<T> | |
): Seq.Indexed<T>; | |
function Seq<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>; | |
function Seq<K = unknown, V = unknown>(): Seq<K, V>; | |
interface Seq<K, V> extends Collection<K, V> { | |
/** | |
* Some Seqs can describe their size lazily. When this is the case, | |
* size will be an integer. Otherwise it will be undefined. | |
* | |
* For example, Seqs returned from `map()` or `reverse()` | |
* preserve the size of the original `Seq` while `filter()` does not. | |
* | |
* Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will | |
* always have a size. | |
*/ | |
readonly size: number | undefined; | |
// Force evaluation | |
/** | |
* Because Sequences are lazy and designed to be chained together, they do | |
* not cache their results. For example, this map function is called a total | |
* of 6 times, as each `join` iterates the Seq of three values. | |
* | |
* var squares = Seq([ 1, 2, 3 ]).map(x => x * x) | |
* squares.join() + squares.join() | |
* | |
* If you know a `Seq` will be used multiple times, it may be more | |
* efficient to first cache it in memory. Here, the map function is called | |
* only 3 times. | |
* | |
* var squares = Seq([ 1, 2, 3 ]).map(x => x * x).cacheResult() | |
* squares.join() + squares.join() | |
* | |
* Use this method judiciously, as it must fully evaluate a Seq which can be | |
* a burden on memory and possibly performance. | |
* | |
* Note: after calling `cacheResult`, a Seq will always have a `size`. | |
*/ | |
cacheResult(): this; | |
// Sequence algorithms | |
/** | |
* Returns a new Seq with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Seq } = require('immutable') | |
* Seq([ 1, 2 ]).map(x => 10 * x) | |
* // Seq [ 10, 20 ] | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the same | |
* value at every step. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Seq<K, M>; | |
/** | |
* Returns a new Seq with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Seq } = require('immutable') | |
* Seq([ 1, 2 ]).map(x => 10 * x) | |
* // Seq [ 10, 20 ] | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the same | |
* value at every step. | |
* Note: used only for sets. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Seq<M, M>; | |
/** | |
* Flat-maps the Seq, returning a Seq of the same type. | |
* | |
* Similar to `seq.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: V, key: K, iter: this) => Iterable<M>, | |
context?: unknown | |
): Seq<K, M>; | |
/** | |
* Flat-maps the Seq, returning a Seq of the same type. | |
* | |
* Similar to `seq.map(...).flatten(true)`. | |
* Note: Used only for sets. | |
*/ | |
flatMap<M>( | |
mapper: (value: V, key: K, iter: this) => Iterable<M>, | |
context?: unknown | |
): Seq<M, M>; | |
/** | |
* Returns a new Seq with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): Seq<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Seq with the values for which the `predicate` function | |
* returns false and another for which is returns true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [Seq<K, V>, Seq<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
} | |
/** | |
* The `Collection` is a set of (key, value) entries which can be iterated, and | |
* is the base class for all collections in `immutable`, allowing them to | |
* make use of all the Collection methods (such as `map` and `filter`). | |
* | |
* Note: A collection is always iterated in the same order, however that order | |
* may not always be well defined, as is the case for the `Map` and `Set`. | |
* | |
* Collection is the abstract base class for concrete data structures. It | |
* cannot be constructed directly. | |
* | |
* Implementations should extend one of the subclasses, `Collection.Keyed`, | |
* `Collection.Indexed`, or `Collection.Set`. | |
*/ | |
namespace Collection { | |
/** | |
* @deprecated use `const { isKeyed } = require('immutable')` | |
*/ | |
function isKeyed( | |
maybeKeyed: unknown | |
): maybeKeyed is Collection.Keyed<unknown, unknown>; | |
/** | |
* @deprecated use `const { isIndexed } = require('immutable')` | |
*/ | |
function isIndexed( | |
maybeIndexed: unknown | |
): maybeIndexed is Collection.Indexed<unknown>; | |
/** | |
* @deprecated use `const { isAssociative } = require('immutable')` | |
*/ | |
function isAssociative( | |
maybeAssociative: unknown | |
): maybeAssociative is | |
| Collection.Keyed<unknown, unknown> | |
| Collection.Indexed<unknown>; | |
/** | |
* @deprecated use `const { isOrdered } = require('immutable')` | |
*/ | |
function isOrdered(maybeOrdered: unknown): boolean; | |
/** | |
* Keyed Collections have discrete keys tied to each value. | |
* | |
* When iterating `Collection.Keyed`, each iteration will yield a `[K, V]` | |
* tuple, in other words, `Collection#entries` is the default iterator for | |
* Keyed Collections. | |
*/ | |
namespace Keyed {} | |
/** | |
* Creates a Collection.Keyed | |
* | |
* Similar to `Collection()`, however it expects collection-likes of [K, V] | |
* tuples if not constructed from a Collection.Keyed or JS Object. | |
* | |
* Note: `Collection.Keyed` is a conversion function and not a class, and | |
* does not use the `new` keyword during construction. | |
*/ | |
function Keyed<K, V>(collection?: Iterable<[K, V]>): Collection.Keyed<K, V>; | |
function Keyed<V>(obj: { [key: string]: V }): Collection.Keyed<string, V>; | |
interface Keyed<K, V> extends Collection<K, V> { | |
/** | |
* Deeply converts this Keyed collection to equivalent native JavaScript Object. | |
* | |
* Converts keys to Strings. | |
*/ | |
toJS(): { [key in string | number | symbol]: DeepCopy<V> }; | |
/** | |
* Shallowly converts this Keyed collection to equivalent native JavaScript Object. | |
* | |
* Converts keys to Strings. | |
*/ | |
toJSON(): { [key in string | number | symbol]: V }; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<[K, V]>; | |
/** | |
* Returns Seq.Keyed. | |
* @override | |
*/ | |
toSeq(): Seq.Keyed<K, V>; | |
// Sequence functions | |
/** | |
* Returns a new Collection.Keyed of the same type where the keys and values | |
* have been flipped. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ a: 'z', b: 'y' }).flip() | |
* // Map { "z": "a", "y": "b" } | |
* ``` | |
*/ | |
flip(): Collection.Keyed<V, K>; | |
/** | |
* Returns a new Collection with other collections concatenated to this one. | |
*/ | |
concat<KC, VC>( | |
...collections: Array<Iterable<[KC, VC]>> | |
): Collection.Keyed<K | KC, V | VC>; | |
concat<C>( | |
...collections: Array<{ [key: string]: C }> | |
): Collection.Keyed<K | string, V | C>; | |
/** | |
* Returns a new Collection.Keyed with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Collection } = require('immutable') | |
* Collection.Keyed({ a: 1, b: 2 }).map(x => 10 * x) | |
* // Seq { "a": 10, "b": 20 } | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Collection.Keyed<K, M>; | |
/** | |
* Returns a new Collection.Keyed of the same type with keys passed through | |
* a `mapper` function. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ a: 1, b: 2 }).mapKeys(x => x.toUpperCase()) | |
* // Map { "A": 1, "B": 2 } | |
* ``` | |
* | |
* Note: `mapKeys()` always returns a new instance, even if it produced | |
* the same key at every step. | |
*/ | |
mapKeys<M>( | |
mapper: (key: K, value: V, iter: this) => M, | |
context?: unknown | |
): Collection.Keyed<M, V>; | |
/** | |
* Returns a new Collection.Keyed of the same type with entries | |
* ([key, value] tuples) passed through a `mapper` function. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ a: 1, b: 2 }) | |
* .mapEntries(([ k, v ]) => [ k.toUpperCase(), v * 2 ]) | |
* // Map { "A": 2, "B": 4 } | |
* ``` | |
* | |
* Note: `mapEntries()` always returns a new instance, even if it produced | |
* the same entry at every step. | |
* | |
* If the mapper function returns `undefined`, then the entry will be filtered | |
*/ | |
mapEntries<KM, VM>( | |
mapper: ( | |
entry: [K, V], | |
index: number, | |
iter: this | |
) => [KM, VM] | undefined, | |
context?: unknown | |
): Collection.Keyed<KM, VM>; | |
/** | |
* Flat-maps the Collection, returning a Collection of the same type. | |
* | |
* Similar to `collection.map(...).flatten(true)`. | |
*/ | |
flatMap<KM, VM>( | |
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>, | |
context?: unknown | |
): Collection.Keyed<KM, VM>; | |
/** | |
* Returns a new Collection with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): Collection.Keyed<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new keyed Collection with the values for which the | |
* `predicate` function returns false and another for which is returns | |
* true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [Collection.Keyed<K, V>, Collection.Keyed<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
[Symbol.iterator](): IterableIterator<[K, V]>; | |
} | |
/** | |
* Indexed Collections have incrementing numeric keys. They exhibit | |
* slightly different behavior than `Collection.Keyed` for some methods in order | |
* to better mirror the behavior of JavaScript's `Array`, and add methods | |
* which do not make sense on non-indexed Collections such as `indexOf`. | |
* | |
* Unlike JavaScript arrays, `Collection.Indexed`s are always dense. "Unset" | |
* indices and `undefined` indices are indistinguishable, and all indices from | |
* 0 to `size` are visited when iterated. | |
* | |
* All Collection.Indexed methods return re-indexed Collections. In other words, | |
* indices always start at 0 and increment until size. If you wish to | |
* preserve indices, using them as keys, convert to a Collection.Keyed by | |
* calling `toKeyedSeq`. | |
*/ | |
namespace Indexed {} | |
/** | |
* Creates a new Collection.Indexed. | |
* | |
* Note: `Collection.Indexed` is a conversion function and not a class, and | |
* does not use the `new` keyword during construction. | |
*/ | |
function Indexed<T>( | |
collection?: Iterable<T> | ArrayLike<T> | |
): Collection.Indexed<T>; | |
interface Indexed<T> extends Collection<number, T> { | |
/** | |
* Deeply converts this Indexed collection to equivalent native JavaScript Array. | |
*/ | |
toJS(): Array<DeepCopy<T>>; | |
/** | |
* Shallowly converts this Indexed collection to equivalent native JavaScript Array. | |
*/ | |
toJSON(): Array<T>; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<T>; | |
// Reading values | |
/** | |
* Returns the value associated with the provided index, or notSetValue if | |
* the index is beyond the bounds of the Collection. | |
* | |
* `index` may be a negative number, which indexes back from the end of the | |
* Collection. `s.get(-1)` gets the last item in the Collection. | |
*/ | |
get<NSV>(index: number, notSetValue: NSV): T | NSV; | |
get(index: number): T | undefined; | |
// Conversion to Seq | |
/** | |
* Returns Seq.Indexed. | |
* @override | |
*/ | |
toSeq(): Seq.Indexed<T>; | |
/** | |
* If this is a collection of [key, value] entry tuples, it will return a | |
* Seq.Keyed of those entries. | |
*/ | |
fromEntrySeq(): Seq.Keyed<unknown, unknown>; | |
// Combination | |
/** | |
* Returns a Collection of the same type with `separator` between each item | |
* in this Collection. | |
*/ | |
interpose(separator: T): this; | |
/** | |
* Returns a Collection of the same type with the provided `collections` | |
* interleaved into this collection. | |
* | |
* The resulting Collection includes the first item from each, then the | |
* second from each, etc. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "require('immutable')"} | |
* --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 1, 2, 3 ]).interleave(List([ 'A', 'B', 'C' ])) | |
* // List [ 1, "A", 2, "B", 3, "C" ] | |
* ``` | |
* | |
* The shortest Collection stops interleave. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable')" } | |
* --> | |
* ```js | |
* List([ 1, 2, 3 ]).interleave( | |
* List([ 'A', 'B' ]), | |
* List([ 'X', 'Y', 'Z' ]) | |
* ) | |
* // List [ 1, "A", "X", 2, "B", "Y" ] | |
* ``` | |
* | |
* Since `interleave()` re-indexes values, it produces a complete copy, | |
* which has `O(N)` complexity. | |
* | |
* Note: `interleave` *cannot* be used in `withMutations`. | |
*/ | |
interleave(...collections: Array<Collection<unknown, T>>): this; | |
/** | |
* Splice returns a new indexed Collection by replacing a region of this | |
* Collection with new values. If values are not provided, it only skips the | |
* region to be removed. | |
* | |
* `index` may be a negative number, which indexes back from the end of the | |
* Collection. `s.splice(-2)` splices after the second to last item. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 'a', 'b', 'c', 'd' ]).splice(1, 2, 'q', 'r', 's') | |
* // List [ "a", "q", "r", "s", "d" ] | |
* ``` | |
* | |
* Since `splice()` re-indexes values, it produces a complete copy, which | |
* has `O(N)` complexity. | |
* | |
* Note: `splice` *cannot* be used in `withMutations`. | |
*/ | |
splice(index: number, removeNum: number, ...values: Array<T>): this; | |
/** | |
* Returns a Collection of the same type "zipped" with the provided | |
* collections. | |
* | |
* Like `zipWith`, but using the default `zipper`: creating an `Array`. | |
* | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable')" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 4, 5, 6 ]); | |
* const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] | |
* ``` | |
*/ | |
zip<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>; | |
zip<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Collection.Indexed<[T, U, V]>; | |
zip( | |
...collections: Array<Collection<unknown, unknown>> | |
): Collection.Indexed<unknown>; | |
/** | |
* Returns a Collection "zipped" with the provided collections. | |
* | |
* Unlike `zip`, `zipAll` continues zipping until the longest collection is | |
* exhausted. Missing values from shorter collections are filled with `undefined`. | |
* | |
* ```js | |
* const a = List([ 1, 2 ]); | |
* const b = List([ 3, 4, 5 ]); | |
* const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ] | |
* ``` | |
*/ | |
zipAll<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>; | |
zipAll<U, V>( | |
other: Collection<unknown, U>, | |
other2: Collection<unknown, V> | |
): Collection.Indexed<[T, U, V]>; | |
zipAll( | |
...collections: Array<Collection<unknown, unknown>> | |
): Collection.Indexed<unknown>; | |
/** | |
* Returns a Collection of the same type "zipped" with the provided | |
* collections by using a custom `zipper` function. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { List } = require('immutable')" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 4, 5, 6 ]); | |
* const c = a.zipWith((a, b) => a + b, b); | |
* // List [ 5, 7, 9 ] | |
* ``` | |
*/ | |
zipWith<U, Z>( | |
zipper: (value: T, otherValue: U) => Z, | |
otherCollection: Collection<unknown, U> | |
): Collection.Indexed<Z>; | |
zipWith<U, V, Z>( | |
zipper: (value: T, otherValue: U, thirdValue: V) => Z, | |
otherCollection: Collection<unknown, U>, | |
thirdCollection: Collection<unknown, V> | |
): Collection.Indexed<Z>; | |
zipWith<Z>( | |
zipper: (...values: Array<unknown>) => Z, | |
...collections: Array<Collection<unknown, unknown>> | |
): Collection.Indexed<Z>; | |
// Search for value | |
/** | |
* Returns the first index at which a given value can be found in the | |
* Collection, or -1 if it is not present. | |
*/ | |
indexOf(searchValue: T): number; | |
/** | |
* Returns the last index at which a given value can be found in the | |
* Collection, or -1 if it is not present. | |
*/ | |
lastIndexOf(searchValue: T): number; | |
/** | |
* Returns the first index in the Collection where a value satisfies the | |
* provided predicate function. Otherwise -1 is returned. | |
*/ | |
findIndex( | |
predicate: (value: T, index: number, iter: this) => boolean, | |
context?: unknown | |
): number; | |
/** | |
* Returns the last index in the Collection where a value satisfies the | |
* provided predicate function. Otherwise -1 is returned. | |
*/ | |
findLastIndex( | |
predicate: (value: T, index: number, iter: this) => boolean, | |
context?: unknown | |
): number; | |
// Sequence algorithms | |
/** | |
* Returns a new Collection with other collections concatenated to this one. | |
*/ | |
concat<C>( | |
...valuesOrCollections: Array<Iterable<C> | C> | |
): Collection.Indexed<T | C>; | |
/** | |
* Returns a new Collection.Indexed with values passed through a | |
* `mapper` function. | |
* | |
* ```js | |
* const { Collection } = require('immutable') | |
* Collection.Indexed([1,2]).map(x => 10 * x) | |
* // Seq [ 1, 2 ] | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: T, key: number, iter: this) => M, | |
context?: unknown | |
): Collection.Indexed<M>; | |
/** | |
* Flat-maps the Collection, returning a Collection of the same type. | |
* | |
* Similar to `collection.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: number, iter: this) => Iterable<M>, | |
context?: unknown | |
): Collection.Indexed<M>; | |
/** | |
* Returns a new Collection with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, index: number, iter: this) => value is F, | |
context?: unknown | |
): Collection.Indexed<F>; | |
filter( | |
predicate: (value: T, index: number, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new indexed Collection with the values for which the | |
* `predicate` function returns false and another for which is returns | |
* true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, index: number, iter: this) => value is F, | |
context?: C | |
): [Collection.Indexed<T>, Collection.Indexed<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, index: number, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
[Symbol.iterator](): IterableIterator<T>; | |
} | |
/** | |
* Set Collections only represent values. They have no associated keys or | |
* indices. Duplicate values are possible in the lazy `Seq.Set`s, however | |
* the concrete `Set` Collection does not allow duplicate values. | |
* | |
* Collection methods on Collection.Set such as `map` and `forEach` will provide | |
* the value as both the first and second arguments to the provided function. | |
* | |
* ```js | |
* const { Collection } = require('immutable') | |
* const seq = Collection.Set([ 'A', 'B', 'C' ]) | |
* // Seq { "A", "B", "C" } | |
* seq.forEach((v, k) => | |
* assert.equal(v, k) | |
* ) | |
* ``` | |
*/ | |
namespace Set {} | |
/** | |
* Similar to `Collection()`, but always returns a Collection.Set. | |
* | |
* Note: `Collection.Set` is a factory function and not a class, and does | |
* not use the `new` keyword during construction. | |
*/ | |
function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Collection.Set<T>; | |
interface Set<T> extends Collection<T, T> { | |
/** | |
* Deeply converts this Set collection to equivalent native JavaScript Array. | |
*/ | |
toJS(): Array<DeepCopy<T>>; | |
/** | |
* Shallowly converts this Set collection to equivalent native JavaScript Array. | |
*/ | |
toJSON(): Array<T>; | |
/** | |
* Shallowly converts this collection to an Array. | |
*/ | |
toArray(): Array<T>; | |
/** | |
* Returns Seq.Set. | |
* @override | |
*/ | |
toSeq(): Seq.Set<T>; | |
// Sequence algorithms | |
/** | |
* Returns a new Collection with other collections concatenated to this one. | |
*/ | |
concat<U>(...collections: Array<Iterable<U>>): Collection.Set<T | U>; | |
/** | |
* Returns a new Collection.Set with values passed through a | |
* `mapper` function. | |
* | |
* ``` | |
* Collection.Set([ 1, 2 ]).map(x => 10 * x) | |
* // Seq { 1, 2 } | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the | |
* same value at every step. | |
*/ | |
map<M>( | |
mapper: (value: T, key: T, iter: this) => M, | |
context?: unknown | |
): Collection.Set<M>; | |
/** | |
* Flat-maps the Collection, returning a Collection of the same type. | |
* | |
* Similar to `collection.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: T, key: T, iter: this) => Iterable<M>, | |
context?: unknown | |
): Collection.Set<M>; | |
/** | |
* Returns a new Collection with only the values for which the `predicate` | |
* function returns true. | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends T>( | |
predicate: (value: T, key: T, iter: this) => value is F, | |
context?: unknown | |
): Collection.Set<F>; | |
filter( | |
predicate: (value: T, key: T, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new set Collection with the values for which the | |
* `predicate` function returns false and another for which is returns | |
* true. | |
*/ | |
partition<F extends T, C>( | |
predicate: (this: C, value: T, key: T, iter: this) => value is F, | |
context?: C | |
): [Collection.Set<T>, Collection.Set<F>]; | |
partition<C>( | |
predicate: (this: C, value: T, key: T, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
[Symbol.iterator](): IterableIterator<T>; | |
} | |
} | |
/** | |
* Creates a Collection. | |
* | |
* The type of Collection created is based on the input. | |
* | |
* * If an `Collection`, that same `Collection`. | |
* * If an Array-like, an `Collection.Indexed`. | |
* * If an Object with an Iterator defined, an `Collection.Indexed`. | |
* * If an Object, an `Collection.Keyed`. | |
* | |
* This methods forces the conversion of Objects and Strings to Collections. | |
* If you want to ensure that a Collection of one item is returned, use | |
* `Seq.of`. | |
* | |
* Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`, | |
* which is usually not what you want. You should turn your Iterator Object into | |
* an iterable object by defining a Symbol.iterator (or @@iterator) method which | |
* returns `this`. | |
* | |
* Note: `Collection` is a conversion function and not a class, and does not | |
* use the `new` keyword during construction. | |
*/ | |
function Collection<I extends Collection<unknown, unknown>>(collection: I): I; | |
function Collection<T>( | |
collection: Iterable<T> | ArrayLike<T> | |
): Collection.Indexed<T>; | |
function Collection<V>(obj: { | |
[key: string]: V; | |
}): Collection.Keyed<string, V>; | |
function Collection<K = unknown, V = unknown>(): Collection<K, V>; | |
interface Collection<K, V> extends ValueObject { | |
// Value equality | |
/** | |
* True if this and the other Collection have value equality, as defined | |
* by `Immutable.is()`. | |
* | |
* Note: This is equivalent to `Immutable.is(this, other)`, but provided to | |
* allow for chained expressions. | |
*/ | |
equals(other: unknown): boolean; | |
/** | |
* Computes and returns the hashed identity for this Collection. | |
* | |
* The `hashCode` of a Collection is used to determine potential equality, | |
* and is used when adding this to a `Set` or as a key in a `Map`, enabling | |
* lookup via a different instance. | |
* | |
* <!-- runkit:activate | |
* { "preamble": "const { Set, List } = require('immutable')" } | |
* --> | |
* ```js | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 1, 2, 3 ]); | |
* assert.notStrictEqual(a, b); // different instances | |
* const set = Set([ a ]); | |
* assert.equal(set.has(b), true); | |
* ``` | |
* | |
* If two values have the same `hashCode`, they are [not guaranteed | |
* to be equal][Hash Collision]. If two values have different `hashCode`s, | |
* they must not be equal. | |
* | |
* [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science) | |
*/ | |
hashCode(): number; | |
// Reading values | |
/** | |
* Returns the value associated with the provided key, or notSetValue if | |
* the Collection does not contain this key. | |
* | |
* Note: it is possible a key may be associated with an `undefined` value, | |
* so if `notSetValue` is not provided and this method returns `undefined`, | |
* that does not guarantee the key was not found. | |
*/ | |
get<NSV>(key: K, notSetValue: NSV): V | NSV; | |
get(key: K): V | undefined; | |
/** | |
* True if a key exists within this `Collection`, using `Immutable.is` | |
* to determine equality | |
*/ | |
has(key: K): boolean; | |
/** | |
* True if a value exists within this `Collection`, using `Immutable.is` | |
* to determine equality | |
* @alias contains | |
*/ | |
includes(value: V): boolean; | |
contains(value: V): boolean; | |
/** | |
* In case the `Collection` is not empty returns the first element of the | |
* `Collection`. | |
* In case the `Collection` is empty returns the optional default | |
* value if provided, if no default value is provided returns undefined. | |
*/ | |
first<NSV = undefined>(notSetValue?: NSV): V | NSV; | |
/** | |
* In case the `Collection` is not empty returns the last element of the | |
* `Collection`. | |
* In case the `Collection` is empty returns the optional default | |
* value if provided, if no default value is provided returns undefined. | |
*/ | |
last<NSV = undefined>(notSetValue?: NSV): V | NSV; | |
// Reading deep values | |
/** | |
* Returns the value found by following a path of keys or indices through | |
* nested Collections. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, List } = require('immutable') | |
* const deepData = Map({ x: List([ Map({ y: 123 }) ]) }); | |
* deepData.getIn(['x', 0, 'y']) // 123 | |
* ``` | |
* | |
* Plain JavaScript Object or Arrays may be nested within an Immutable.js | |
* Collection, and getIn() can access those values as well: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, List } = require('immutable') | |
* const deepData = Map({ x: [ { y: 123 } ] }); | |
* deepData.getIn(['x', 0, 'y']) // 123 | |
* ``` | |
*/ | |
getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown; | |
/** | |
* True if the result of following a path of keys or indices through nested | |
* Collections results in a set value. | |
*/ | |
hasIn(searchKeyPath: Iterable<unknown>): boolean; | |
// Persistent changes | |
/** | |
* This can be very useful as a way to "chain" a normal function into a | |
* sequence of methods. RxJS calls this "let" and lodash calls it "thru". | |
* | |
* For example, to sum a Seq after mapping and filtering: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Seq } = require('immutable') | |
* | |
* function sum(collection) { | |
* return collection.reduce((sum, x) => sum + x, 0) | |
* } | |
* | |
* Seq([ 1, 2, 3 ]) | |
* .map(x => x + 1) | |
* .filter(x => x % 2 === 0) | |
* .update(sum) | |
* // 6 | |
* ``` | |
*/ | |
update<R>(updater: (value: this) => R): R; | |
// Conversion to JavaScript types | |
/** | |
* Deeply converts this Collection to equivalent native JavaScript Array or Object. | |
* | |
* `Collection.Indexed`, and `Collection.Set` become `Array`, while | |
* `Collection.Keyed` become `Object`, converting keys to Strings. | |
*/ | |
toJS(): | |
| Array<DeepCopy<V>> | |
| { [key in string | number | symbol]: DeepCopy<V> }; | |
/** | |
* Shallowly converts this Collection to equivalent native JavaScript Array or Object. | |
* | |
* `Collection.Indexed`, and `Collection.Set` become `Array`, while | |
* `Collection.Keyed` become `Object`, converting keys to Strings. | |
*/ | |
toJSON(): Array<V> | { [key in string | number | symbol]: V }; | |
/** | |
* Shallowly converts this collection to an Array. | |
* | |
* `Collection.Indexed`, and `Collection.Set` produce an Array of values. | |
* `Collection.Keyed` produce an Array of [key, value] tuples. | |
*/ | |
toArray(): Array<V> | Array<[K, V]>; | |
/** | |
* Shallowly converts this Collection to an Object. | |
* | |
* Converts keys to Strings. | |
*/ | |
toObject(): { [key: string]: V }; | |
// Conversion to Collections | |
/** | |
* Converts this Collection to a Map, Throws if keys are not hashable. | |
* | |
* Note: This is equivalent to `Map(this.toKeyedSeq())`, but provided | |
* for convenience and to allow for chained expressions. | |
*/ | |
toMap(): Map<K, V>; | |
/** | |
* Converts this Collection to a Map, maintaining the order of iteration. | |
* | |
* Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`, but | |
* provided for convenience and to allow for chained expressions. | |
*/ | |
toOrderedMap(): OrderedMap<K, V>; | |
/** | |
* Converts this Collection to a Set, discarding keys. Throws if values | |
* are not hashable. | |
* | |
* Note: This is equivalent to `Set(this)`, but provided to allow for | |
* chained expressions. | |
*/ | |
toSet(): Set<V>; | |
/** | |
* Converts this Collection to a Set, maintaining the order of iteration and | |
* discarding keys. | |
* | |
* Note: This is equivalent to `OrderedSet(this.valueSeq())`, but provided | |
* for convenience and to allow for chained expressions. | |
*/ | |
toOrderedSet(): OrderedSet<V>; | |
/** | |
* Converts this Collection to a List, discarding keys. | |
* | |
* This is similar to `List(collection)`, but provided to allow for chained | |
* expressions. However, when called on `Map` or other keyed collections, | |
* `collection.toList()` discards the keys and creates a list of only the | |
* values, whereas `List(collection)` creates a list of entry tuples. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, List } = require('immutable') | |
* var myMap = Map({ a: 'Apple', b: 'Banana' }) | |
* List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ] | |
* myMap.toList() // List [ "Apple", "Banana" ] | |
* ``` | |
*/ | |
toList(): List<V>; | |
/** | |
* Converts this Collection to a Stack, discarding keys. Throws if values | |
* are not hashable. | |
* | |
* Note: This is equivalent to `Stack(this)`, but provided to allow for | |
* chained expressions. | |
*/ | |
toStack(): Stack<V>; | |
// Conversion to Seq | |
/** | |
* Converts this Collection to a Seq of the same kind (indexed, | |
* keyed, or set). | |
*/ | |
toSeq(): Seq<K, V>; | |
/** | |
* Returns a Seq.Keyed from this Collection where indices are treated as keys. | |
* | |
* This is useful if you want to operate on an | |
* Collection.Indexed and preserve the [index, value] pairs. | |
* | |
* The returned Seq will have identical iteration order as | |
* this Collection. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Seq } = require('immutable') | |
* const indexedSeq = Seq([ 'A', 'B', 'C' ]) | |
* // Seq [ "A", "B", "C" ] | |
* indexedSeq.filter(v => v === 'B') | |
* // Seq [ "B" ] | |
* const keyedSeq = indexedSeq.toKeyedSeq() | |
* // Seq { 0: "A", 1: "B", 2: "C" } | |
* keyedSeq.filter(v => v === 'B') | |
* // Seq { 1: "B" } | |
* ``` | |
*/ | |
toKeyedSeq(): Seq.Keyed<K, V>; | |
/** | |
* Returns an Seq.Indexed of the values of this Collection, discarding keys. | |
*/ | |
toIndexedSeq(): Seq.Indexed<V>; | |
/** | |
* Returns a Seq.Set of the values of this Collection, discarding keys. | |
*/ | |
toSetSeq(): Seq.Set<V>; | |
// Iterators | |
/** | |
* An iterator of this `Collection`'s keys. | |
* | |
* Note: this will return an ES6 iterator which does not support | |
* Immutable.js sequence algorithms. Use `keySeq` instead, if this is | |
* what you want. | |
*/ | |
keys(): IterableIterator<K>; | |
/** | |
* An iterator of this `Collection`'s values. | |
* | |
* Note: this will return an ES6 iterator which does not support | |
* Immutable.js sequence algorithms. Use `valueSeq` instead, if this is | |
* what you want. | |
*/ | |
values(): IterableIterator<V>; | |
/** | |
* An iterator of this `Collection`'s entries as `[ key, value ]` tuples. | |
* | |
* Note: this will return an ES6 iterator which does not support | |
* Immutable.js sequence algorithms. Use `entrySeq` instead, if this is | |
* what you want. | |
*/ | |
entries(): IterableIterator<[K, V]>; | |
[Symbol.iterator](): IterableIterator<unknown>; | |
// Collections (Seq) | |
/** | |
* Returns a new Seq.Indexed of the keys of this Collection, | |
* discarding values. | |
*/ | |
keySeq(): Seq.Indexed<K>; | |
/** | |
* Returns an Seq.Indexed of the values of this Collection, discarding keys. | |
*/ | |
valueSeq(): Seq.Indexed<V>; | |
/** | |
* Returns a new Seq.Indexed of [key, value] tuples. | |
*/ | |
entrySeq(): Seq.Indexed<[K, V]>; | |
// Sequence algorithms | |
/** | |
* Returns a new Collection of the same type with values passed through a | |
* `mapper` function. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Collection } = require('immutable') | |
* Collection({ a: 1, b: 2 }).map(x => 10 * x) | |
* // Seq { "a": 10, "b": 20 } | |
* ``` | |
* | |
* Note: `map()` always returns a new instance, even if it produced the same | |
* value at every step. | |
*/ | |
map<M>( | |
mapper: (value: V, key: K, iter: this) => M, | |
context?: unknown | |
): Collection<K, M>; | |
/** | |
* Note: used only for sets, which return Collection<M, M> but are otherwise | |
* identical to normal `map()`. | |
* | |
* @ignore | |
*/ | |
map(...args: Array<never>): unknown; | |
/** | |
* Returns a new Collection of the same type with only the entries for which | |
* the `predicate` function returns true. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ a: 1, b: 2, c: 3, d: 4}).filter(x => x % 2 === 0) | |
* // Map { "b": 2, "d": 4 } | |
* ``` | |
* | |
* Note: `filter()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filter<F extends V>( | |
predicate: (value: V, key: K, iter: this) => value is F, | |
context?: unknown | |
): Collection<K, F>; | |
filter( | |
predicate: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Collection of the same type with only the entries for which | |
* the `predicate` function returns false. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0) | |
* // Map { "a": 1, "c": 3 } | |
* ``` | |
* | |
* Note: `filterNot()` always returns a new instance, even if it results in | |
* not filtering out any values. | |
*/ | |
filterNot( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Collection with the values for which the `predicate` | |
* function returns false and another for which is returns true. | |
*/ | |
partition<F extends V, C>( | |
predicate: (this: C, value: V, key: K, iter: this) => value is F, | |
context?: C | |
): [Collection<K, V>, Collection<K, F>]; | |
partition<C>( | |
predicate: (this: C, value: V, key: K, iter: this) => unknown, | |
context?: C | |
): [this, this]; | |
/** | |
* Returns a new Collection of the same type in reverse order. | |
*/ | |
reverse(): this; | |
/** | |
* Returns a new Collection of the same type which includes the same entries, | |
* stably sorted by using a `comparator`. | |
* | |
* If a `comparator` is not provided, a default comparator uses `<` and `>`. | |
* | |
* `comparator(valueA, valueB)`: | |
* | |
* * Returns `0` if the elements should not be swapped. | |
* * Returns `-1` (or any negative number) if `valueA` comes before `valueB` | |
* * Returns `1` (or any positive number) if `valueA` comes after `valueB` | |
* * Alternatively, can return a value of the `PairSorting` enum type | |
* * Is pure, i.e. it must always return the same value for the same pair | |
* of values. | |
* | |
* When sorting collections which have no defined order, their ordered | |
* equivalents will be returned. e.g. `map.sort()` returns OrderedMap. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => { | |
* if (a < b) { return -1; } | |
* if (a > b) { return 1; } | |
* if (a === b) { return 0; } | |
* }); | |
* // OrderedMap { "a": 1, "b": 2, "c": 3 } | |
* ``` | |
* | |
* Note: `sort()` Always returns a new instance, even if the original was | |
* already sorted. | |
* | |
* Note: This is always an eager operation. | |
*/ | |
sort(comparator?: Comparator<V>): this; | |
/** | |
* Like `sort`, but also accepts a `comparatorValueMapper` which allows for | |
* sorting by more sophisticated means: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* const beattles = Map({ | |
* John: { name: "Lennon" }, | |
* Paul: { name: "McCartney" }, | |
* George: { name: "Harrison" }, | |
* Ringo: { name: "Starr" }, | |
* }); | |
* beattles.sortBy(member => member.name); | |
* ``` | |
* | |
* Note: `sortBy()` Always returns a new instance, even if the original was | |
* already sorted. | |
* | |
* Note: This is always an eager operation. | |
*/ | |
sortBy<C>( | |
comparatorValueMapper: (value: V, key: K, iter: this) => C, | |
comparator?: Comparator<C> | |
): this; | |
/** | |
* Returns a `Map` of `Collection`, grouped by the return | |
* value of the `grouper` function. | |
* | |
* Note: This is always an eager operation. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List, Map } = require('immutable') | |
* const listOfMaps = List([ | |
* Map({ v: 0 }), | |
* Map({ v: 1 }), | |
* Map({ v: 1 }), | |
* Map({ v: 0 }), | |
* Map({ v: 2 }) | |
* ]) | |
* const groupsOfMaps = listOfMaps.groupBy(x => x.get('v')) | |
* // Map { | |
* // 0: List [ Map{ "v": 0 }, Map { "v": 0 } ], | |
* // 1: List [ Map{ "v": 1 }, Map { "v": 1 } ], | |
* // 2: List [ Map{ "v": 2 } ], | |
* // } | |
* ``` | |
*/ | |
groupBy<G>( | |
grouper: (value: V, key: K, iter: this) => G, | |
context?: unknown | |
): Map<G, this>; | |
// Side effects | |
/** | |
* The `sideEffect` is executed for every entry in the Collection. | |
* | |
* Unlike `Array#forEach`, if any call of `sideEffect` returns | |
* `false`, the iteration will stop. Returns the number of entries iterated | |
* (including the last iteration which returned false). | |
*/ | |
forEach( | |
sideEffect: (value: V, key: K, iter: this) => unknown, | |
context?: unknown | |
): number; | |
// Creating subsets | |
/** | |
* Returns a new Collection of the same type representing a portion of this | |
* Collection from start up to but not including end. | |
* | |
* If begin is negative, it is offset from the end of the Collection. e.g. | |
* `slice(-2)` returns a Collection of the last two entries. If it is not | |
* provided the new Collection will begin at the beginning of this Collection. | |
* | |
* If end is negative, it is offset from the end of the Collection. e.g. | |
* `slice(0, -1)` returns a Collection of everything but the last entry. If | |
* it is not provided, the new Collection will continue through the end of | |
* this Collection. | |
* | |
* If the requested slice is equivalent to the current Collection, then it | |
* will return itself. | |
*/ | |
slice(begin?: number, end?: number): this; | |
/** | |
* Returns a new Collection of the same type containing all entries except | |
* the first. | |
*/ | |
rest(): this; | |
/** | |
* Returns a new Collection of the same type containing all entries except | |
* the last. | |
*/ | |
butLast(): this; | |
/** | |
* Returns a new Collection of the same type which excludes the first `amount` | |
* entries from this Collection. | |
*/ | |
skip(amount: number): this; | |
/** | |
* Returns a new Collection of the same type which excludes the last `amount` | |
* entries from this Collection. | |
*/ | |
skipLast(amount: number): this; | |
/** | |
* Returns a new Collection of the same type which includes entries starting | |
* from when `predicate` first returns false. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) | |
* .skipWhile(x => x.match(/g/)) | |
* // List [ "cat", "hat", "god" ] | |
* ``` | |
*/ | |
skipWhile( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Collection of the same type which includes entries starting | |
* from when `predicate` first returns true. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) | |
* .skipUntil(x => x.match(/hat/)) | |
* // List [ "hat", "god" ] | |
* ``` | |
*/ | |
skipUntil( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Collection of the same type which includes the first `amount` | |
* entries from this Collection. | |
*/ | |
take(amount: number): this; | |
/** | |
* Returns a new Collection of the same type which includes the last `amount` | |
* entries from this Collection. | |
*/ | |
takeLast(amount: number): this; | |
/** | |
* Returns a new Collection of the same type which includes entries from this | |
* Collection as long as the `predicate` returns true. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) | |
* .takeWhile(x => x.match(/o/)) | |
* // List [ "dog", "frog" ] | |
* ``` | |
*/ | |
takeWhile( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): this; | |
/** | |
* Returns a new Collection of the same type which includes entries from this | |
* Collection as long as the `predicate` returns false. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List } = require('immutable') | |
* List([ 'dog', 'frog', 'cat', 'hat', 'god' ]) | |
* .takeUntil(x => x.match(/at/)) | |
* // List [ "dog", "frog" ] | |
* ``` | |
*/ | |
takeUntil( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): this; | |
// Combination | |
/** | |
* Returns a new Collection of the same type with other values and | |
* collection-like concatenated to this one. | |
* | |
* For Seqs, all entries will be present in the resulting Seq, even if they | |
* have the same key. | |
*/ | |
concat( | |
...valuesOrCollections: Array<unknown> | |
): Collection<unknown, unknown>; | |
/** | |
* Flattens nested Collections. | |
* | |
* Will deeply flatten the Collection by default, returning a Collection of the | |
* same type, but a `depth` can be provided in the form of a number or | |
* boolean (where true means to shallowly flatten one level). A depth of 0 | |
* (or shallow: false) will deeply flatten. | |
* | |
* Flattens only others Collection, not Arrays or Objects. | |
* | |
* Note: `flatten(true)` operates on Collection<unknown, Collection<K, V>> and | |
* returns Collection<K, V> | |
*/ | |
flatten(depth?: number): Collection<unknown, unknown>; | |
// tslint:disable-next-line unified-signatures | |
flatten(shallow?: boolean): Collection<unknown, unknown>; | |
/** | |
* Flat-maps the Collection, returning a Collection of the same type. | |
* | |
* Similar to `collection.map(...).flatten(true)`. | |
*/ | |
flatMap<M>( | |
mapper: (value: V, key: K, iter: this) => Iterable<M>, | |
context?: unknown | |
): Collection<K, M>; | |
/** | |
* Flat-maps the Collection, returning a Collection of the same type. | |
* | |
* Similar to `collection.map(...).flatten(true)`. | |
* Used for Dictionaries only. | |
*/ | |
flatMap<KM, VM>( | |
mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>, | |
context?: unknown | |
): Collection<KM, VM>; | |
// Reducing a value | |
/** | |
* Reduces the Collection to a value by calling the `reducer` for every entry | |
* in the Collection and passing along the reduced value. | |
* | |
* If `initialReduction` is not provided, the first item in the | |
* Collection will be used. | |
* | |
* @see `Array#reduce`. | |
*/ | |
reduce<R>( | |
reducer: (reduction: R, value: V, key: K, iter: this) => R, | |
initialReduction: R, | |
context?: unknown | |
): R; | |
reduce<R>( | |
reducer: (reduction: V | R, value: V, key: K, iter: this) => R | |
): R; | |
/** | |
* Reduces the Collection in reverse (from the right side). | |
* | |
* Note: Similar to this.reverse().reduce(), and provided for parity | |
* with `Array#reduceRight`. | |
*/ | |
reduceRight<R>( | |
reducer: (reduction: R, value: V, key: K, iter: this) => R, | |
initialReduction: R, | |
context?: unknown | |
): R; | |
reduceRight<R>( | |
reducer: (reduction: V | R, value: V, key: K, iter: this) => R | |
): R; | |
/** | |
* True if `predicate` returns true for all entries in the Collection. | |
*/ | |
every( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): boolean; | |
/** | |
* True if `predicate` returns true for any entry in the Collection. | |
*/ | |
some( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): boolean; | |
/** | |
* Joins values together as a string, inserting a separator between each. | |
* The default separator is `","`. | |
*/ | |
join(separator?: string): string; | |
/** | |
* Returns true if this Collection includes no values. | |
* | |
* For some lazy `Seq`, `isEmpty` might need to iterate to determine | |
* emptiness. At most one iteration will occur. | |
*/ | |
isEmpty(): boolean; | |
/** | |
* Returns the size of this Collection. | |
* | |
* Regardless of if this Collection can describe its size lazily (some Seqs | |
* cannot), this method will always return the correct size. E.g. it | |
* evaluates a lazy `Seq` if necessary. | |
* | |
* If `predicate` is provided, then this returns the count of entries in the | |
* Collection for which the `predicate` returns true. | |
*/ | |
count(): number; | |
count( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): number; | |
/** | |
* Returns a `Seq.Keyed` of counts, grouped by the return value of | |
* the `grouper` function. | |
* | |
* Note: This is not a lazy operation. | |
*/ | |
countBy<G>( | |
grouper: (value: V, key: K, iter: this) => G, | |
context?: unknown | |
): Map<G, number>; | |
// Search for value | |
/** | |
* Returns the first value for which the `predicate` returns true. | |
*/ | |
find( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown, | |
notSetValue?: V | |
): V | undefined; | |
/** | |
* Returns the last value for which the `predicate` returns true. | |
* | |
* Note: `predicate` will be called for each entry in reverse. | |
*/ | |
findLast( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown, | |
notSetValue?: V | |
): V | undefined; | |
/** | |
* Returns the first [key, value] entry for which the `predicate` returns true. | |
*/ | |
findEntry( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown, | |
notSetValue?: V | |
): [K, V] | undefined; | |
/** | |
* Returns the last [key, value] entry for which the `predicate` | |
* returns true. | |
* | |
* Note: `predicate` will be called for each entry in reverse. | |
*/ | |
findLastEntry( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown, | |
notSetValue?: V | |
): [K, V] | undefined; | |
/** | |
* Returns the key for which the `predicate` returns true. | |
*/ | |
findKey( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): K | undefined; | |
/** | |
* Returns the last key for which the `predicate` returns true. | |
* | |
* Note: `predicate` will be called for each entry in reverse. | |
*/ | |
findLastKey( | |
predicate: (value: V, key: K, iter: this) => boolean, | |
context?: unknown | |
): K | undefined; | |
/** | |
* Returns the key associated with the search value, or undefined. | |
*/ | |
keyOf(searchValue: V): K | undefined; | |
/** | |
* Returns the last key associated with the search value, or undefined. | |
*/ | |
lastKeyOf(searchValue: V): K | undefined; | |
/** | |
* Returns the maximum value in this collection. If any values are | |
* comparatively equivalent, the first one found will be returned. | |
* | |
* The `comparator` is used in the same way as `Collection#sort`. If it is not | |
* provided, the default comparator is `>`. | |
* | |
* When two values are considered equivalent, the first encountered will be | |
* returned. Otherwise, `max` will operate independent of the order of input | |
* as long as the comparator is commutative. The default comparator `>` is | |
* commutative *only* when types do not differ. | |
* | |
* If `comparator` returns 0 and either value is NaN, undefined, or null, | |
* that value will be returned. | |
*/ | |
max(comparator?: Comparator<V>): V | undefined; | |
/** | |
* Like `max`, but also accepts a `comparatorValueMapper` which allows for | |
* comparing by more sophisticated means: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List, } = require('immutable'); | |
* const l = List([ | |
* { name: 'Bob', avgHit: 1 }, | |
* { name: 'Max', avgHit: 3 }, | |
* { name: 'Lili', avgHit: 2 } , | |
* ]); | |
* l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 } | |
* ``` | |
*/ | |
maxBy<C>( | |
comparatorValueMapper: (value: V, key: K, iter: this) => C, | |
comparator?: Comparator<C> | |
): V | undefined; | |
/** | |
* Returns the minimum value in this collection. If any values are | |
* comparatively equivalent, the first one found will be returned. | |
* | |
* The `comparator` is used in the same way as `Collection#sort`. If it is not | |
* provided, the default comparator is `<`. | |
* | |
* When two values are considered equivalent, the first encountered will be | |
* returned. Otherwise, `min` will operate independent of the order of input | |
* as long as the comparator is commutative. The default comparator `<` is | |
* commutative *only* when types do not differ. | |
* | |
* If `comparator` returns 0 and either value is NaN, undefined, or null, | |
* that value will be returned. | |
*/ | |
min(comparator?: Comparator<V>): V | undefined; | |
/** | |
* Like `min`, but also accepts a `comparatorValueMapper` which allows for | |
* comparing by more sophisticated means: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List, } = require('immutable'); | |
* const l = List([ | |
* { name: 'Bob', avgHit: 1 }, | |
* { name: 'Max', avgHit: 3 }, | |
* { name: 'Lili', avgHit: 2 } , | |
* ]); | |
* l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 } | |
* ``` | |
*/ | |
minBy<C>( | |
comparatorValueMapper: (value: V, key: K, iter: this) => C, | |
comparator?: Comparator<C> | |
): V | undefined; | |
// Comparison | |
/** | |
* True if `iter` includes every value in this Collection. | |
*/ | |
isSubset(iter: Iterable<V>): boolean; | |
/** | |
* True if this Collection includes every value in `iter`. | |
*/ | |
isSuperset(iter: Iterable<V>): boolean; | |
} | |
/** | |
* The interface to fulfill to qualify as a Value Object. | |
*/ | |
interface ValueObject { | |
/** | |
* True if this and the other Collection have value equality, as defined | |
* by `Immutable.is()`. | |
* | |
* Note: This is equivalent to `Immutable.is(this, other)`, but provided to | |
* allow for chained expressions. | |
*/ | |
equals(other: unknown): boolean; | |
/** | |
* Computes and returns the hashed identity for this Collection. | |
* | |
* The `hashCode` of a Collection is used to determine potential equality, | |
* and is used when adding this to a `Set` or as a key in a `Map`, enabling | |
* lookup via a different instance. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { List, Set } = require('immutable'); | |
* const a = List([ 1, 2, 3 ]); | |
* const b = List([ 1, 2, 3 ]); | |
* assert.notStrictEqual(a, b); // different instances | |
* const set = Set([ a ]); | |
* assert.equal(set.has(b), true); | |
* ``` | |
* | |
* Note: hashCode() MUST return a Uint32 number. The easiest way to | |
* guarantee this is to return `myHash | 0` from a custom implementation. | |
* | |
* If two values have the same `hashCode`, they are [not guaranteed | |
* to be equal][Hash Collision]. If two values have different `hashCode`s, | |
* they must not be equal. | |
* | |
* Note: `hashCode()` is not guaranteed to always be called before | |
* `equals()`. Most but not all Immutable.js collections use hash codes to | |
* organize their internal data structures, while all Immutable.js | |
* collections use equality during lookups. | |
* | |
* [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science) | |
*/ | |
hashCode(): number; | |
} | |
/** | |
* Deeply converts plain JS objects and arrays to Immutable Maps and Lists. | |
* | |
* `fromJS` will convert Arrays and [array-like objects][2] to a List, and | |
* plain objects (without a custom prototype) to a Map. [Iterable objects][3] | |
* may be converted to List, Map, or Set. | |
* | |
* If a `reviver` is optionally provided, it will be called with every | |
* collection as a Seq (beginning with the most nested collections | |
* and proceeding to the top-level collection itself), along with the key | |
* referring to each collection and the parent JS object provided as `this`. | |
* For the top level, object, the key will be `""`. This `reviver` is expected | |
* to return a new Immutable Collection, allowing for custom conversions from | |
* deep JS objects. Finally, a `path` is provided which is the sequence of | |
* keys to this value from the starting value. | |
* | |
* `reviver` acts similarly to the [same parameter in `JSON.parse`][1]. | |
* | |
* If `reviver` is not provided, the default behavior will convert Objects | |
* into Maps and Arrays into Lists like so: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { fromJS, isKeyed } = require('immutable') | |
* function (key, value) { | |
* return isKeyed(value) ? value.toMap() : value.toList() | |
* } | |
* ``` | |
* | |
* Accordingly, this example converts native JS data to OrderedMap and List: | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { fromJS, isKeyed } = require('immutable') | |
* fromJS({ a: {b: [10, 20, 30]}, c: 40}, function (key, value, path) { | |
* console.log(key, value, path) | |
* return isKeyed(value) ? value.toOrderedMap() : value.toList() | |
* }) | |
* | |
* > "b", [ 10, 20, 30 ], [ "a", "b" ] | |
* > "a", {b: [10, 20, 30]}, [ "a" ] | |
* > "", {a: {b: [10, 20, 30]}, c: 40}, [] | |
* ``` | |
* | |
* Keep in mind, when using JS objects to construct Immutable Maps, that | |
* JavaScript Object properties are always strings, even if written in a | |
* quote-less shorthand, while Immutable Maps accept keys of any type. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map } = require('immutable') | |
* let obj = { 1: "one" }; | |
* Object.keys(obj); // [ "1" ] | |
* assert.equal(obj["1"], obj[1]); // "one" === "one" | |
* | |
* let map = Map(obj); | |
* assert.notEqual(map.get("1"), map.get(1)); // "one" !== undefined | |
* ``` | |
* | |
* Property access for JavaScript Objects first converts the key to a string, | |
* but since Immutable Map keys can be of any type the argument to `get()` is | |
* not altered. | |
* | |
* [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter | |
* "Using the reviver parameter" | |
* [2]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Indexed_collections#working_with_array-like_objects | |
* "Working with array-like objects" | |
* [3]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol | |
* "The iterable protocol" | |
*/ | |
function fromJS<JSValue>( | |
jsValue: JSValue, | |
reviver?: undefined | |
): FromJS<JSValue>; | |
function fromJS( | |
jsValue: unknown, | |
reviver?: ( | |
key: string | number, | |
sequence: Collection.Keyed<string, unknown> | Collection.Indexed<unknown>, | |
path?: Array<string | number> | |
) => unknown | |
): Collection<unknown, unknown>; | |
type FromJS<JSValue> = JSValue extends FromJSNoTransform | |
? JSValue | |
: JSValue extends Array<any> | |
? FromJSArray<JSValue> | |
: JSValue extends {} | |
? FromJSObject<JSValue> | |
: any; | |
type FromJSNoTransform = | |
| Collection<any, any> | |
| number | |
| string | |
| null | |
| undefined; | |
type FromJSArray<JSValue> = JSValue extends Array<infer T> | |
? List<FromJS<T>> | |
: never; | |
type FromJSObject<JSValue> = JSValue extends {} | |
? Map<keyof JSValue, FromJS<JSValue[keyof JSValue]>> | |
: never; | |
/** | |
* Value equality check with semantics similar to `Object.is`, but treats | |
* Immutable `Collection`s as values, equal if the second `Collection` includes | |
* equivalent values. | |
* | |
* It's used throughout Immutable when checking for equality, including `Map` | |
* key equality and `Set` membership. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { Map, is } = require('immutable') | |
* const map1 = Map({ a: 1, b: 1, c: 1 }) | |
* const map2 = Map({ a: 1, b: 1, c: 1 }) | |
* assert.equal(map1 !== map2, true) | |
* assert.equal(Object.is(map1, map2), false) | |
* assert.equal(is(map1, map2), true) | |
* ``` | |
* | |
* `is()` compares primitive types like strings and numbers, Immutable.js | |
* collections like `Map` and `List`, but also any custom object which | |
* implements `ValueObject` by providing `equals()` and `hashCode()` methods. | |
* | |
* Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same | |
* value, matching the behavior of ES6 Map key equality. | |
*/ | |
function is(first: unknown, second: unknown): boolean; | |
/** | |
* The `hash()` function is an important part of how Immutable determines if | |
* two values are equivalent and is used to determine how to store those | |
* values. Provided with any value, `hash()` will return a 31-bit integer. | |
* | |
* When designing Objects which may be equal, it's important that when a | |
* `.equals()` method returns true, that both values `.hashCode()` method | |
* return the same value. `hash()` may be used to produce those values. | |
* | |
* For non-Immutable Objects that do not provide a `.hashCode()` functions | |
* (including plain Objects, plain Arrays, Date objects, etc), a unique hash | |
* value will be created for each *instance*. That is, the create hash | |
* represents referential equality, and not value equality for Objects. This | |
* ensures that if that Object is mutated over time that its hash code will | |
* remain consistent, allowing Objects to be used as keys and values in | |
* Immutable.js collections. | |
* | |
* Note that `hash()` attempts to balance between speed and avoiding | |
* collisions, however it makes no attempt to produce secure hashes. | |
* | |
* *New in Version 4.0* | |
*/ | |
function hash(value: unknown): number; | |
/** | |
* True if `maybeImmutable` is an Immutable Collection or Record. | |
* | |
* Note: Still returns true even if the collections is within a `withMutations()`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isImmutable, Map, List, Stack } = require('immutable'); | |
* isImmutable([]); // false | |
* isImmutable({}); // false | |
* isImmutable(Map()); // true | |
* isImmutable(List()); // true | |
* isImmutable(Stack()); // true | |
* isImmutable(Map().asMutable()); // true | |
* ``` | |
*/ | |
function isImmutable( | |
maybeImmutable: unknown | |
): maybeImmutable is Collection<unknown, unknown>; | |
/** | |
* True if `maybeCollection` is a Collection, or any of its subclasses. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isCollection, Map, List, Stack } = require('immutable'); | |
* isCollection([]); // false | |
* isCollection({}); // false | |
* isCollection(Map()); // true | |
* isCollection(List()); // true | |
* isCollection(Stack()); // true | |
* ``` | |
*/ | |
function isCollection( | |
maybeCollection: unknown | |
): maybeCollection is Collection<unknown, unknown>; | |
/** | |
* True if `maybeKeyed` is a Collection.Keyed, or any of its subclasses. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isKeyed, Map, List, Stack } = require('immutable'); | |
* isKeyed([]); // false | |
* isKeyed({}); // false | |
* isKeyed(Map()); // true | |
* isKeyed(List()); // false | |
* isKeyed(Stack()); // false | |
* ``` | |
*/ | |
function isKeyed( | |
maybeKeyed: unknown | |
): maybeKeyed is Collection.Keyed<unknown, unknown>; | |
/** | |
* True if `maybeIndexed` is a Collection.Indexed, or any of its subclasses. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isIndexed, Map, List, Stack, Set } = require('immutable'); | |
* isIndexed([]); // false | |
* isIndexed({}); // false | |
* isIndexed(Map()); // false | |
* isIndexed(List()); // true | |
* isIndexed(Stack()); // true | |
* isIndexed(Set()); // false | |
* ``` | |
*/ | |
function isIndexed( | |
maybeIndexed: unknown | |
): maybeIndexed is Collection.Indexed<unknown>; | |
/** | |
* True if `maybeAssociative` is either a Keyed or Indexed Collection. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isAssociative, Map, List, Stack, Set } = require('immutable'); | |
* isAssociative([]); // false | |
* isAssociative({}); // false | |
* isAssociative(Map()); // true | |
* isAssociative(List()); // true | |
* isAssociative(Stack()); // true | |
* isAssociative(Set()); // false | |
* ``` | |
*/ | |
function isAssociative( | |
maybeAssociative: unknown | |
): maybeAssociative is | |
| Collection.Keyed<unknown, unknown> | |
| Collection.Indexed<unknown>; | |
/** | |
* True if `maybeOrdered` is a Collection where iteration order is well | |
* defined. True for Collection.Indexed as well as OrderedMap and OrderedSet. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { isOrdered, Map, OrderedMap, List, Set } = require('immutable'); | |
* isOrdered([]); // false | |
* isOrdered({}); // false | |
* isOrdered(Map()); // false | |
* isOrdered(OrderedMap()); // true | |
* isOrdered(List()); // true | |
* isOrdered(Set()); // false | |
* ``` | |
*/ | |
function isOrdered(maybeOrdered: unknown): boolean; | |
/** | |
* True if `maybeValue` is a JavaScript Object which has *both* `equals()` | |
* and `hashCode()` methods. | |
* | |
* Any two instances of *value objects* can be compared for value equality with | |
* `Immutable.is()` and can be used as keys in a `Map` or members in a `Set`. | |
*/ | |
function isValueObject(maybeValue: unknown): maybeValue is ValueObject; | |
/** | |
* True if `maybeSeq` is a Seq. | |
*/ | |
function isSeq( | |
maybeSeq: unknown | |
): maybeSeq is | |
| Seq.Indexed<unknown> | |
| Seq.Keyed<unknown, unknown> | |
| Seq.Set<unknown>; | |
/** | |
* True if `maybeList` is a List. | |
*/ | |
function isList(maybeList: unknown): maybeList is List<unknown>; | |
/** | |
* True if `maybeMap` is a Map. | |
* | |
* Also true for OrderedMaps. | |
*/ | |
function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>; | |
/** | |
* True if `maybeOrderedMap` is an OrderedMap. | |
*/ | |
function isOrderedMap( | |
maybeOrderedMap: unknown | |
): maybeOrderedMap is OrderedMap<unknown, unknown>; | |
/** | |
* True if `maybeStack` is a Stack. | |
*/ | |
function isStack(maybeStack: unknown): maybeStack is Stack<unknown>; | |
/** | |
* True if `maybeSet` is a Set. | |
* | |
* Also true for OrderedSets. | |
*/ | |
function isSet(maybeSet: unknown): maybeSet is Set<unknown>; | |
/** | |
* True if `maybeOrderedSet` is an OrderedSet. | |
*/ | |
function isOrderedSet( | |
maybeOrderedSet: unknown | |
): maybeOrderedSet is OrderedSet<unknown>; | |
/** | |
* True if `maybeRecord` is a Record. | |
*/ | |
function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>; | |
/** | |
* Returns the value within the provided collection associated with the | |
* provided key, or notSetValue if the key is not defined in the collection. | |
* | |
* A functional alternative to `collection.get(key)` which will also work on | |
* plain Objects and Arrays as an alternative for `collection[key]`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { get } = require('immutable') | |
* get([ 'dog', 'frog', 'cat' ], 2) // 'frog' | |
* get({ x: 123, y: 456 }, 'x') // 123 | |
* get({ x: 123, y: 456 }, 'z', 'ifNotSet') // 'ifNotSet' | |
* ``` | |
*/ | |
function get<K, V>(collection: Collection<K, V>, key: K): V | undefined; | |
function get<K, V, NSV>( | |
collection: Collection<K, V>, | |
key: K, | |
notSetValue: NSV | |
): V | NSV; | |
function get<TProps extends object, K extends keyof TProps>( | |
record: Record<TProps>, | |
key: K, | |
notSetValue: unknown | |
): TProps[K]; | |
function get<V>(collection: Array<V>, key: number): V | undefined; | |
function get<V, NSV>( | |
collection: Array<V>, | |
key: number, | |
notSetValue: NSV | |
): V | NSV; | |
function get<C extends object, K extends keyof C>( | |
object: C, | |
key: K, | |
notSetValue: unknown | |
): C[K]; | |
function get<V>(collection: { [key: string]: V }, key: string): V | undefined; | |
function get<V, NSV>( | |
collection: { [key: string]: V }, | |
key: string, | |
notSetValue: NSV | |
): V | NSV; | |
/** | |
* Returns true if the key is defined in the provided collection. | |
* | |
* A functional alternative to `collection.has(key)` which will also work with | |
* plain Objects and Arrays as an alternative for | |
* `collection.hasOwnProperty(key)`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { has } = require('immutable') | |
* has([ 'dog', 'frog', 'cat' ], 2) // true | |
* has([ 'dog', 'frog', 'cat' ], 5) // false | |
* has({ x: 123, y: 456 }, 'x') // true | |
* has({ x: 123, y: 456 }, 'z') // false | |
* ``` | |
*/ | |
function has(collection: object, key: unknown): boolean; | |
/** | |
* Returns a copy of the collection with the value at key removed. | |
* | |
* A functional alternative to `collection.remove(key)` which will also work | |
* with plain Objects and Arrays as an alternative for | |
* `delete collectionCopy[key]`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { remove } = require('immutable') | |
* const originalArray = [ 'dog', 'frog', 'cat' ] | |
* remove(originalArray, 1) // [ 'dog', 'cat' ] | |
* console.log(originalArray) // [ 'dog', 'frog', 'cat' ] | |
* const originalObject = { x: 123, y: 456 } | |
* remove(originalObject, 'x') // { y: 456 } | |
* console.log(originalObject) // { x: 123, y: 456 } | |
* ``` | |
*/ | |
function remove<K, C extends Collection<K, unknown>>( | |
collection: C, | |
key: K | |
): C; | |
function remove< | |
TProps extends object, | |
C extends Record<TProps>, | |
K extends keyof TProps | |
>(collection: C, key: K): C; | |
function remove<C extends Array<unknown>>(collection: C, key: number): C; | |
function remove<C, K extends keyof C>(collection: C, key: K): C; | |
function remove<C extends { [key: string]: unknown }, K extends keyof C>( | |
collection: C, | |
key: K | |
): C; | |
/** | |
* Returns a copy of the collection with the value at key set to the provided | |
* value. | |
* | |
* A functional alternative to `collection.set(key, value)` which will also | |
* work with plain Objects and Arrays as an alternative for | |
* `collectionCopy[key] = value`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { set } = require('immutable') | |
* const originalArray = [ 'dog', 'frog', 'cat' ] | |
* set(originalArray, 1, 'cow') // [ 'dog', 'cow', 'cat' ] | |
* console.log(originalArray) // [ 'dog', 'frog', 'cat' ] | |
* const originalObject = { x: 123, y: 456 } | |
* set(originalObject, 'x', 789) // { x: 789, y: 456 } | |
* console.log(originalObject) // { x: 123, y: 456 } | |
* ``` | |
*/ | |
function set<K, V, C extends Collection<K, V>>( | |
collection: C, | |
key: K, | |
value: V | |
): C; | |
function set< | |
TProps extends object, | |
C extends Record<TProps>, | |
K extends keyof TProps | |
>(record: C, key: K, value: TProps[K]): C; | |
function set<V, C extends Array<V>>(collection: C, key: number, value: V): C; | |
function set<C, K extends keyof C>(object: C, key: K, value: C[K]): C; | |
function set<V, C extends { [key: string]: V }>( | |
collection: C, | |
key: string, | |
value: V | |
): C; | |
/** | |
* Returns a copy of the collection with the value at key set to the result of | |
* providing the existing value to the updating function. | |
* | |
* A functional alternative to `collection.update(key, fn)` which will also | |
* work with plain Objects and Arrays as an alternative for | |
* `collectionCopy[key] = fn(collection[key])`. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { update } = require('immutable') | |
* const originalArray = [ 'dog', 'frog', 'cat' ] | |
* update(originalArray, 1, val => val.toUpperCase()) // [ 'dog', 'FROG', 'cat' ] | |
* console.log(originalArray) // [ 'dog', 'frog', 'cat' ] | |
* const originalObject = { x: 123, y: 456 } | |
* update(originalObject, 'x', val => val * 6) // { x: 738, y: 456 } | |
* console.log(originalObject) // { x: 123, y: 456 } | |
* ``` | |
*/ | |
function update<K, V, C extends Collection<K, V>>( | |
collection: C, | |
key: K, | |
updater: (value: V | undefined) => V | undefined | |
): C; | |
function update<K, V, C extends Collection<K, V>, NSV>( | |
collection: C, | |
key: K, | |
notSetValue: NSV, | |
updater: (value: V | NSV) => V | |
): C; | |
function update< | |
TProps extends object, | |
C extends Record<TProps>, | |
K extends keyof TProps | |
>(record: C, key: K, updater: (value: TProps[K]) => TProps[K]): C; | |
function update< | |
TProps extends object, | |
C extends Record<TProps>, | |
K extends keyof TProps, | |
NSV | |
>( | |
record: C, | |
key: K, | |
notSetValue: NSV, | |
updater: (value: TProps[K] | NSV) => TProps[K] | |
): C; | |
function update<V>( | |
collection: Array<V>, | |
key: number, | |
updater: (value: V | undefined) => V | undefined | |
): Array<V>; | |
function update<V, NSV>( | |
collection: Array<V>, | |
key: number, | |
notSetValue: NSV, | |
updater: (value: V | NSV) => V | |
): Array<V>; | |
function update<C, K extends keyof C>( | |
object: C, | |
key: K, | |
updater: (value: C[K]) => C[K] | |
): C; | |
function update<C, K extends keyof C, NSV>( | |
object: C, | |
key: K, | |
notSetValue: NSV, | |
updater: (value: C[K] | NSV) => C[K] | |
): C; | |
function update<V, C extends { [key: string]: V }, K extends keyof C>( | |
collection: C, | |
key: K, | |
updater: (value: V) => V | |
): { [key: string]: V }; | |
function update<V, C extends { [key: string]: V }, K extends keyof C, NSV>( | |
collection: C, | |
key: K, | |
notSetValue: NSV, | |
updater: (value: V | NSV) => V | |
): { [key: string]: V }; | |
/** | |
* Returns the value at the provided key path starting at the provided | |
* collection, or notSetValue if the key path is not defined. | |
* | |
* A functional alternative to `collection.getIn(keypath)` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { getIn } = require('immutable') | |
* getIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // 123 | |
* getIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p'], 'ifNotSet') // 'ifNotSet' | |
* ``` | |
*/ | |
function getIn( | |
collection: unknown, | |
keyPath: Iterable<unknown>, | |
notSetValue?: unknown | |
): unknown; | |
/** | |
* Returns true if the key path is defined in the provided collection. | |
* | |
* A functional alternative to `collection.hasIn(keypath)` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { hasIn } = require('immutable') | |
* hasIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // true | |
* hasIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p']) // false | |
* ``` | |
*/ | |
function hasIn(collection: unknown, keyPath: Iterable<unknown>): boolean; | |
/** | |
* Returns a copy of the collection with the value at the key path removed. | |
* | |
* A functional alternative to `collection.removeIn(keypath)` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { removeIn } = require('immutable') | |
* const original = { x: { y: { z: 123 }}} | |
* removeIn(original, ['x', 'y', 'z']) // { x: { y: {}}} | |
* console.log(original) // { x: { y: { z: 123 }}} | |
* ``` | |
*/ | |
function removeIn<C>(collection: C, keyPath: Iterable<unknown>): C; | |
/** | |
* Returns a copy of the collection with the value at the key path set to the | |
* provided value. | |
* | |
* A functional alternative to `collection.setIn(keypath)` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { setIn } = require('immutable') | |
* const original = { x: { y: { z: 123 }}} | |
* setIn(original, ['x', 'y', 'z'], 456) // { x: { y: { z: 456 }}} | |
* console.log(original) // { x: { y: { z: 123 }}} | |
* ``` | |
*/ | |
function setIn<C>( | |
collection: C, | |
keyPath: Iterable<unknown>, | |
value: unknown | |
): C; | |
/** | |
* Returns a copy of the collection with the value at key path set to the | |
* result of providing the existing value to the updating function. | |
* | |
* A functional alternative to `collection.updateIn(keypath)` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { updateIn } = require('immutable') | |
* const original = { x: { y: { z: 123 }}} | |
* updateIn(original, ['x', 'y', 'z'], val => val * 6) // { x: { y: { z: 738 }}} | |
* console.log(original) // { x: { y: { z: 123 }}} | |
* ``` | |
*/ | |
function updateIn<C>( | |
collection: C, | |
keyPath: Iterable<unknown>, | |
updater: (value: unknown) => unknown | |
): C; | |
function updateIn<C>( | |
collection: C, | |
keyPath: Iterable<unknown>, | |
notSetValue: unknown, | |
updater: (value: unknown) => unknown | |
): C; | |
/** | |
* Returns a copy of the collection with the remaining collections merged in. | |
* | |
* A functional alternative to `collection.merge()` which will also work with | |
* plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { merge } = require('immutable') | |
* const original = { x: 123, y: 456 } | |
* merge(original, { y: 789, z: 'abc' }) // { x: 123, y: 789, z: 'abc' } | |
* console.log(original) // { x: 123, y: 456 } | |
* ``` | |
*/ | |
function merge<C>( | |
collection: C, | |
...collections: Array< | |
| Iterable<unknown> | |
| Iterable<[unknown, unknown]> | |
| { [key: string]: unknown } | |
> | |
): C; | |
/** | |
* Returns a copy of the collection with the remaining collections merged in, | |
* calling the `merger` function whenever an existing value is encountered. | |
* | |
* A functional alternative to `collection.mergeWith()` which will also work | |
* with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { mergeWith } = require('immutable') | |
* const original = { x: 123, y: 456 } | |
* mergeWith( | |
* (oldVal, newVal) => oldVal + newVal, | |
* original, | |
* { y: 789, z: 'abc' } | |
* ) // { x: 123, y: 1245, z: 'abc' } | |
* console.log(original) // { x: 123, y: 456 } | |
* ``` | |
*/ | |
function mergeWith<C>( | |
merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown, | |
collection: C, | |
...collections: Array< | |
| Iterable<unknown> | |
| Iterable<[unknown, unknown]> | |
| { [key: string]: unknown } | |
> | |
): C; | |
/** | |
* Like `merge()`, but when two compatible collections are encountered with | |
* the same key, it merges them as well, recursing deeply through the nested | |
* data. Two collections are considered to be compatible (and thus will be | |
* merged together) if they both fall into one of three categories: keyed | |
* (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and | |
* arrays), or set-like (e.g., `Set`s). If they fall into separate | |
* categories, `mergeDeep` will replace the existing collection with the | |
* collection being merged in. This behavior can be customized by using | |
* `mergeDeepWith()`. | |
* | |
* Note: Indexed and set-like collections are merged using | |
* `concat()`/`union()` and therefore do not recurse. | |
* | |
* A functional alternative to `collection.mergeDeep()` which will also work | |
* with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { mergeDeep } = require('immutable') | |
* const original = { x: { y: 123 }} | |
* mergeDeep(original, { x: { z: 456 }}) // { x: { y: 123, z: 456 }} | |
* console.log(original) // { x: { y: 123 }} | |
* ``` | |
*/ | |
function mergeDeep<C>( | |
collection: C, | |
...collections: Array< | |
| Iterable<unknown> | |
| Iterable<[unknown, unknown]> | |
| { [key: string]: unknown } | |
> | |
): C; | |
/** | |
* Like `mergeDeep()`, but when two non-collections or incompatible | |
* collections are encountered at the same key, it uses the `merger` function | |
* to determine the resulting value. Collections are considered incompatible | |
* if they fall into separate categories between keyed, indexed, and set-like. | |
* | |
* A functional alternative to `collection.mergeDeepWith()` which will also | |
* work with plain Objects and Arrays. | |
* | |
* <!-- runkit:activate --> | |
* ```js | |
* const { mergeDeepWith } = require('immutable') | |
* const original = { x: { y: 123 }} | |
* mergeDeepWith( | |
* (oldVal, newVal) => oldVal + newVal, | |
* original, | |
* { x: { y: 456 }} | |
* ) // { x: { y: 579 }} | |
* console.log(original) // { x: { y: 123 }} | |
* ``` | |
*/ | |
function mergeDeepWith<C>( | |
merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown, | |
collection: C, | |
...collections: Array< | |
| Iterable<unknown> | |
| Iterable<[unknown, unknown]> | |
| { [key: string]: unknown } | |
> | |
): C; | |
} | |
/** | |
* Defines the main export of the immutable module to be the Immutable namespace | |
* This supports many common module import patterns: | |
* | |
* const Immutable = require("immutable"); | |
* const { List } = require("immutable"); | |
* import Immutable from "immutable"; | |
* import * as Immutable from "immutable"; | |
* import { List } from "immutable"; | |
* | |
*/ | |
export = Immutable; | |
/** | |
* A global "Immutable" namespace used by UMD modules which allows the use of | |
* the full Immutable API. | |
* | |
* If using Immutable as an imported module, prefer using: | |
* | |
* import Immutable from 'immutable' | |
* | |
*/ | |
export as namespace Immutable; | |