from tts_infer.tts import TextToMel, MelToWav from tts_infer.transliterate import XlitEngine from tts_infer.num_to_word_on_sent import normalize_nums import re import numpy as np from scipy.io.wavfile import write from mosestokenizer import * from indicnlp.tokenize import sentence_tokenize import gradio as gr INDIC = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"] def split_sentences(paragraph, language): if language == "en": with MosesSentenceSplitter(language) as splitter: return splitter([paragraph]) elif language in INDIC: return sentence_tokenize.sentence_split(paragraph, lang=language) device='cpu' text_to_mel = TextToMel(glow_model_dir='vakyansh-tts/tts_infer/odia/glow', device=device) mel_to_wav = MelToWav(hifi_model_dir='vakyansh-tts/tts_infer/odia/hifi', device=device) def run_tts(text, lang): final_text = text mel = text_to_mel.generate_mel(final_text) audio, sr = mel_to_wav.generate_wav(mel) write(filename='temp.wav', rate=sr, data=audio) # for saving wav file, if needed return (sr, audio) def run_tts_paragraph(text, lang): audio_list = [] split_sentences_list = split_sentences(text, language='hi') for sent in split_sentences_list: sr, audio = run_tts(sent, lang) audio_list.append(audio) concatenated_audio = np.concatenate([i for i in audio_list]) write(filename='temp_long.wav', rate=sr, data=concatenated_audio) return (sr, concatenated_audio) _, audio = run_tts("ଆମେ ଦୁଖିତ, ଆପଣଙ୍କର ଚିନ୍ତାଧାରାକୁ ସମାଧାନ କରିବାରେ ଅସମର୍ଥ, ଆମେ ଆପଣଙ୍କ ସହ ଯୋଗାଯୋଗ କରିବାକୁ ୱାର୍କସପ୍ଦ ଦଳକୁ କହିବୁ, ତୁମର ଦିନ ଶୁଭମୟ ହଉ.", "or") options = ["Odia"] newOptions = ["Male","Female"] language = gr.Dropdown(options,label="Select language") gender = gr.Dropdown(newOptions,label="Select Voice") input = gr.Textbox( label="Input from model will appear here:", lines=5 ) output = gr.Audio(label="Output from model will appear here:", type="filepath") gr.Interface(run_tts, inputs = [input,language], outputs=output, streaming=True, interactive=True, analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);