Spaces:
Paused
Paused
File size: 6,278 Bytes
6b9bc13 b8acae3 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 b8acae3 6b9bc13 bf42cab 6b9bc13 bf42cab b8acae3 bf42cab b8acae3 bf42cab b8acae3 bf42cab dde251d 85e24ba b8acae3 0b10e6e bf42cab 0b10e6e b8acae3 bf42cab b8acae3 bf42cab 0b10e6e b8acae3 bf42cab b8acae3 85e24ba 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab 6b9bc13 bf42cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import sys
import io, os, stat
import subprocess
import random
from zipfile import ZipFile
import uuid
import time
import torch
import torchaudio
import langid
import base64
import csv
from io import StringIO
import datetime
import re
from scipy.io.wavfile import write
from pydub import AudioSegment
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
os.system('python -m unidic download')
# Autenticación y descarga del modelo
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Downloading {file_name} from {repo_id}")
local_file_path = os.path.join(local_dir, file_name)
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
# Carga de configuración y modelo
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)
print("Modelo cargado en CPU")
# Variables globales
supported_languages = config.languages
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
]
# Función para dividir el texto en chunks
def split_text(text):
sentences = re.split(r'(?<=[.!?])\s+', text)
return sentences
# Función de inferencia mejorada
def predict(prompt, language, audio_file_pth, use_reference_audio):
try:
if use_reference_audio:
speaker_wav = audio_file_pth
else:
speaker_wav = "neutral.wav" # Audio por defecto si no se selecciona uno
sentences = split_text(prompt)
temperature = getattr(config, "temperature", 0.75)
repetition_penalty = getattr(config, "repetition_penalty", 5.0)
gpt_cond_len = getattr(config, "gpt_cond_len", 30)
gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
max_ref_length = getattr(config, "max_ref_len", 60)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_length
)
start_time = time.time()
combined_audio = AudioSegment.empty()
for sentence in sentences:
out = model.inference(
sentence,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
audio_segment = AudioSegment(
out["wav"].tobytes(),
frame_rate=24000,
sample_width=2,
channels=1
)
combined_audio += audio_segment
combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
inference_time = time.time() - start_time
output_path = "output.wav"
combined_audio.export(output_path, format="wav")
audio_length = len(combined_audio) / 1000 # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return gr.make_waveform(output_path), output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, None, f"Error: {str(e)}"
# Definir el tema personalizado
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
# Descripción del proyecto
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista o cargue su propio audio
- Escriba el texto a sintetizar
- Presione generar voz
"""
# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description)
with gr.Row():
gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
with gr.Row():
with gr.Column(scale=2):
language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
use_reference_audio = gr.Checkbox(label="Usar audio de referencia")
reference_audio = gr.Dropdown(label="Audio de referencia predefinido", choices=reference_audios, visible=False)
audio_file = gr.Audio(label="O cargue su propio audio de referencia", type="filepath", visible=False)
use_reference_audio.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=[use_reference_audio],
outputs=[reference_audio, audio_file]
)
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...", lines=5)
generate_button = gr.Button("Generar voz", variant="primary")
with gr.Column(scale=1):
output_audio = gr.Audio(label="Audio generado")
waveform = gr.Image(label="Forma de onda")
metrics = gr.Textbox(label="Métricas")
generate_button.click(
predict,
inputs=[input_text, language, audio_file, use_reference_audio],
outputs=[waveform, output_audio, metrics]
)
if __name__ == "__main__":
demo.launch(debug=True) |