Spaces:
Paused
Paused
File size: 7,188 Bytes
5047800 ab4d778 df0da2c ab4d778 4dd639c 00fb423 4dd639c 309dde4 4e1e12d 309dde4 4e1e12d 309dde4 4e1e12d cd24b6a 4dd639c 00fb423 cd24b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import torch
import torchaudio
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
def check_and_install(package):
try:
__import__(package)
except ImportError:
print(f"{package} no está instalado. Instalando...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Descargando {file_name} de {repo_id}")
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
model.cuda()
print("Modelo cargado en GPU")
def predict(prompt, language, reference_audio):
try:
if len(prompt) < 2 or len(prompt) > 600:
return None, "El texto debe tener entre 2 y 600 caracteres."
# Obtener los parámetros de la configuración JSON
temperature = config.model_args.get("temperature", 0.85)
length_penalty = config.model_args.get("length_penalty", 1.0)
repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
top_k = config.model_args.get("top_k", 50)
top_p = config.model_args.get("top_p", 0.85)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=reference_audio
)
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p
)
inference_time = time.time() - start_time
output_path = "pedro_labattaglia_TTS.wav"
# Guardar el audio directamente desde el output del modelo
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, f"Error: {str(e)}"
# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
"neutral_ingles.wav"
]
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista
- Escriba el texto que desea sintetizar
- Presione generar voz
"""
# JavaScript mejorado para limpiar los datos de autenticación
clear_auth_js = """
function clearAuthData() {
localStorage.removeItem('gradio_auth_token');
localStorage.removeItem('gradio_auth_expiration');
sessionStorage.removeItem('gradio_auth_token');
sessionStorage.removeItem('gradio_auth_expiration');
document.cookie = 'gradio_auth_token=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;';
document.cookie = 'gradio_auth_expiration=; expires=Thu, 01 Jan 1970 00:00:00 UTC; path=/;';
}
window.addEventListener('beforeunload', clearAuthData);
function logout() {
clearAuthData();
window.location.reload();
}
"""
# CSS personalizado
custom_css = """
#image-container img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 256px;
height: auto;
}
.logout-button {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
padding: 8px 16px;
background-color: #f44336;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.logout-button:hover {
background-color: #d32f2f;
}
.login-container {
background-color: white;
padding: 2rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
text-align: center;
max-width: 400px;
width: 100%;
}
.login-container h1 {
margin-bottom: 1rem;
color: #4a4a4a;
}
.login-container input {
width: 100%;
padding: 0.5rem;
margin-bottom: 1rem;
border: 1px solid #ddd;
border-radius: 4px;
}
.login-container button {
width: 100%;
padding: 0.5rem;
background-color: #3498db;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
.login-container button:hover {
background-color: #2980b9;
}
"""
# Modificar la parte del formulario de inicio de sesión
def custom_auth(username, password):
if (username, password) in [("Pedro Labattaglia", "PL2024"), ("Invitado", "PLTTS2024")]:
return True
return False
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz..."),
gr.Dropdown(label="Idioma", choices=supported_languages),
gr.Dropdown(label="Audio de referencia", choices=reference_audios)
],
outputs=[
gr.Audio(label="Audio generado"),
gr.Textbox(label="Métricas")
],
title="Sintetizador de voz de Pedro Labattaglia",
description=description,
theme=theme,
css=custom_css,
allow_flagging="never"
)
# Crear una nueva interfaz para el inicio de sesión
login_iface = gr.Interface(
fn=custom_auth,
inputs=[
gr.Textbox(label="Usuario", placeholder="Ingrese su nombre de usuario"),
gr.Textbox(label="Contraseña", type="password", placeholder="Ingrese su contraseña")
],
outputs=gr.Textbox(visible=False),
title="Bienvenido al sintetizador de voz de Pedro Labattaglia",
description="Por favor, introduzca sus credenciales para acceder.",
theme=theme,
css=custom_css
)
# Combinar las interfaces
demo = gr.TabbedInterface([login_iface, iface], ["Login", "Sintetizador"])
if __name__ == "__main__":
demo.launch() |