Blakus's picture
Update app.py
4e20e22 verified
raw
history blame
5.64 kB
import os
import re
import time
import sys
import subprocess
import gradio as gr
from pydub import AudioSegment # Corrección aquí
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download
# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"
def check_and_install(package):
try:
__import__(package)
except ImportError:
print(f"{package} no está instalado. Instalando...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Descargando {file_name} de {repo_id}")
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)
print("Modelo cargado en CPU")
def predict(prompt, language, reference_audio):
try:
if len(prompt) < 2 or len(prompt) > 600:
return None, "El texto debe tener entre 2 y 600 caracteres."
sentences = split_text(prompt)
# Obtener los parámetros de la configuración JSON
temperature = config.model_args.get("temperature", 0.85)
length_penalty = config.model_args.get("length_penalty", 1.0)
repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
top_k = config.model_args.get("top_k", 50)
top_p = config.model_args.get("top_p", 0.85)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=reference_audio
)
start_time = time.time()
combined_audio = AudioSegment.empty()
for sentence in sentences:
out = model.inference(
sentence,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p
)
audio_segment = AudioSegment(
out["wav"].tobytes(),
frame_rate=config.audio["output_sample_rate"],
sample_width=2,
channels=1
)
combined_audio += audio_segment
combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
inference_time = time.time() - start_time
output_path = "output.wav"
combined_audio.export(output_path, format="wav")
audio_length = len(combined_audio) / 1000 # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return output_path, metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, f"Error: {str(e)}"
# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
"serio.wav",
"neutral.wav",
"alegre.wav",
]
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
).set(
body_background_fill='*neutral_100',
body_background_fill_dark='*neutral_900',
)
description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista
- Escriba el texto que desea sintetizar
- Presione generar voz
"""
# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description)
with gr.Row():
gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg",
label="",
show_label=False,
container=False, # Esto permite que la imagen se ajuste al contenedor
height="auto") # Altura automática para mantener la relación de aspecto
with gr.Row():
with gr.Column(scale=2):
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
generate_button = gr.Button("Generar voz", variant="primary")
with gr.Column(scale=1):
generated_audio = gr.Audio(label="Audio generado", interactive=False)
metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
generate_button.click(
predict,
inputs=[input_text, language_selector, reference_audio],
outputs=[generated_audio, metrics_output]
)
if __name__ == "__main__":
demo.launch()