Blakus commited on
Commit
0cb17da
·
verified ·
1 Parent(s): 5fd80ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -98
app.py CHANGED
@@ -1,101 +1,3 @@
1
- import os
2
- import re
3
- import time
4
- import sys
5
- import subprocess
6
- import scipy.io.wavfile as wavfile
7
- import torch
8
- import torchaudio
9
- import gradio as gr
10
- from TTS.api import TTS
11
- from TTS.tts.configs.xtts_config import XttsConfig
12
- from TTS.tts.models.xtts import Xtts
13
- from TTS.utils.generic_utils import get_user_data_dir
14
- from huggingface_hub import hf_hub_download
15
-
16
- # Configuración inicial
17
- os.environ["COQUI_TOS_AGREED"] = "1"
18
-
19
- def check_and_install(package):
20
- try:
21
- __import__(package)
22
- except ImportError:
23
- print(f"{package} no está instalado. Instalando...")
24
- subprocess.check_call([sys.executable, "-m", "pip", "install", package])
25
-
26
- print("Descargando y configurando el modelo...")
27
- repo_id = "Blakus/Pedro_Lab_XTTS"
28
- local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
29
- os.makedirs(local_dir, exist_ok=True)
30
- files_to_download = ["config.json", "model.pth", "vocab.json"]
31
-
32
- for file_name in files_to_download:
33
- print(f"Descargando {file_name} de {repo_id}")
34
- hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
35
-
36
- config_path = os.path.join(local_dir, "config.json")
37
- checkpoint_path = os.path.join(local_dir, "model.pth")
38
- vocab_path = os.path.join(local_dir, "vocab.json")
39
-
40
- config = XttsConfig()
41
- config.load_json(config_path)
42
-
43
- model = Xtts.init_from_config(config)
44
- model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=True)
45
-
46
- model.cuda()
47
-
48
- print("Modelo cargado en GPU")
49
-
50
- def predict(prompt, language, reference_audio):
51
- try:
52
- if len(prompt) < 2 or len(prompt) > 600:
53
- return None, "El texto debe tener entre 2 y 600 caracteres."
54
-
55
- # Obtener los parámetros de la configuración JSON
56
- temperature = config.model_args.get("temperature", 0.85)
57
- length_penalty = config.model_args.get("length_penalty", 1.0)
58
- repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
59
- top_k = config.model_args.get("top_k", 50)
60
- top_p = config.model_args.get("top_p", 0.85)
61
-
62
- gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
63
- audio_path=reference_audio
64
- )
65
-
66
- start_time = time.time()
67
-
68
- out = model.inference(
69
- prompt,
70
- language,
71
- gpt_cond_latent,
72
- speaker_embedding,
73
- temperature=temperature,
74
- length_penalty=length_penalty,
75
- repetition_penalty=repetition_penalty,
76
- top_k=top_k,
77
- top_p=top_p
78
- )
79
-
80
- inference_time = time.time() - start_time
81
-
82
- output_path = "pedro_labattaglia_TTS.wav"
83
- # Guardar el audio directamente desde el output del modelo
84
- import scipy.io.wavfile as wavfile
85
- wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
86
-
87
- audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
88
- real_time_factor = inference_time / audio_length
89
-
90
- metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
91
- metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
92
-
93
- return output_path, metrics_text
94
-
95
- except Exception as e:
96
- print(f"Error detallado: {str(e)}")
97
- return None, f"Error: {str(e)}"
98
-
99
  # Configuración de la interfaz de Gradio
100
  supported_languages = ["es", "en"]
101
  reference_audios = [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Configuración de la interfaz de Gradio
2
  supported_languages = ["es", "en"]
3
  reference_audios = [