Blakus commited on
Commit
b02eca0
·
verified ·
1 Parent(s): 0781598

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -88
app.py CHANGED
@@ -1,52 +1,49 @@
1
- import sys
2
- import io, os, stat
3
- import subprocess
4
- import random
5
- from zipfile import ZipFile
6
- import uuid
7
- import time
8
- import torch
9
- import torchaudio
10
- import time
11
- # Mantenemos la descarga de MeCab
12
- os.system('python -m unidic download')
13
-
14
- # Mantenemos el acuerdo de CPML
15
- os.environ["COQUI_TOS_AGREED"] = "1"
16
-
17
- import langid
18
- import base64
19
- import csv
20
- from io import StringIO
21
- import datetime
22
  import re
23
-
24
  import gradio as gr
25
- from scipy.io.wavfile import write
26
  from pydub import AudioSegment
27
-
28
  from TTS.api import TTS
29
  from TTS.tts.configs.xtts_config import XttsConfig
30
  from TTS.tts.models.xtts import Xtts
31
  from TTS.utils.generic_utils import get_user_data_dir
32
-
33
- HF_TOKEN = os.environ.get("HF_TOKEN")
34
-
35
  from huggingface_hub import hf_hub_download
36
- import os
37
- from TTS.utils.manage import get_user_data_dir
38
 
39
- # Mantenemos la autenticación y descarga del modelo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  repo_id = "Blakus/Pedro_Lab_XTTS"
41
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
42
  os.makedirs(local_dir, exist_ok=True)
43
  files_to_download = ["config.json", "model.pth", "vocab.json"]
 
44
  for file_name in files_to_download:
45
  print(f"Downloading {file_name} from {repo_id}")
46
- local_file_path = os.path.join(local_dir, file_name)
47
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
48
 
49
- # Cargamos configuración y modelo
50
  config_path = os.path.join(local_dir, "config.json")
51
  checkpoint_path = os.path.join(local_dir, "model.pth")
52
  vocab_path = os.path.join(local_dir, "vocab.json")
@@ -59,90 +56,119 @@ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_
59
 
60
  print("Modelo cargado en CPU")
61
 
62
- # Mantenemos variables globales y funciones auxiliares
63
- DEVICE_ASSERT_DETECTED = 0
64
- DEVICE_ASSERT_PROMPT = None
65
- DEVICE_ASSERT_LANG = None
66
- supported_languages = config.languages
67
 
68
- # Función de inferencia usando parámetros predeterminados del archivo de configuración
69
- def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
70
  try:
71
- if use_mic:
72
- speaker_wav = mic_file_path
73
- else:
74
- speaker_wav = audio_file_pth
75
 
76
- if len(prompt) < 2 or len(prompt) > 200:
77
- return None, None, "El texto debe tener entre 2 y 200 caracteres."
78
 
79
- # Usamos los valores de la configuración directamente
80
- temperature = getattr(config, "temperature", 0.75)
81
- repetition_penalty = getattr(config, "repetition_penalty", 5.0)
82
- gpt_cond_len = getattr(config, "gpt_cond_len", 30)
83
- gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
84
- max_ref_length = getattr(config, "max_ref_len", 60)
85
 
86
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
87
- audio_path=speaker_wav,
88
  gpt_cond_len=gpt_cond_len,
89
  gpt_cond_chunk_len=gpt_cond_chunk_len,
90
  max_ref_length=max_ref_length
91
  )
92
 
93
- # Medimos el tiempo de inferencia manualmente
94
  start_time = time.time()
95
- out = model.inference(
96
- prompt,
97
- language,
98
- gpt_cond_latent,
99
- speaker_embedding,
100
- temperature=temperature,
101
- repetition_penalty=repetition_penalty,
102
- )
 
 
 
 
 
 
 
 
 
 
 
 
103
  inference_time = time.time() - start_time
104
 
105
- torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
 
106
 
107
- # Calculamos las métricas usando el tiempo medido manualmente
108
- audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
109
  real_time_factor = inference_time / audio_length
110
 
111
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
112
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
113
 
114
- return gr.make_waveform("output.wav"), "output.wav", metrics_text
115
 
116
  except Exception as e:
117
  print(f"Error detallado: {str(e)}")
118
- return None, None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
 
 
120
 
121
- # Interfaz de Gradio actualizada sin sliders
122
- with gr.Blocks(theme=gr.themes.Base()) as demo:
123
- gr.Markdown("# Sintetizador de Voz XTTS")
124
-
125
  with gr.Row():
126
- with gr.Column():
 
 
127
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
128
- language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
129
- audio_file = gr.Audio(label="Audio de referencia", type="filepath")
130
- use_mic = gr.Checkbox(label="Usar micrófono")
131
- mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
132
-
133
- use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
134
-
135
- generate_button = gr.Button("Generar voz")
136
-
137
- with gr.Column():
138
- output_audio = gr.Audio(label="Audio generado")
139
- waveform = gr.Image(label="Forma de onda")
140
- metrics = gr.Textbox(label="Métricas")
141
-
142
  generate_button.click(
143
  predict,
144
- inputs=[input_text, language, audio_file, mic_file, use_mic],
145
- outputs=[waveform, output_audio, metrics]
146
  )
147
 
148
- demo.launch(debug=True)
 
 
1
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import re
3
+ import time
4
  import gradio as gr
 
5
  from pydub import AudioSegment
 
6
  from TTS.api import TTS
7
  from TTS.tts.configs.xtts_config import XttsConfig
8
  from TTS.tts.models.xtts import Xtts
9
  from TTS.utils.generic_utils import get_user_data_dir
 
 
 
10
  from huggingface_hub import hf_hub_download
11
+ import subprocess
12
+ import sys
13
 
14
+ # Configuración inicial
15
+ os.environ["COQUI_TOS_AGREED"] = "1"
16
+
17
+ # Función para descargar y configurar UniDic
18
+ def setup_unidic():
19
+ try:
20
+ subprocess.check_call([sys.executable, '-m', 'unidic', 'download'])
21
+ print("UniDic descargado correctamente")
22
+ except subprocess.CalledProcessError:
23
+ print("Error al descargar UniDic")
24
+ return False
25
+
26
+ # Configurar la variable de entorno para MeCab
27
+ import unidic
28
+ mecab_dic_dir = unidic.DICDIR
29
+ os.environ['MECABRC'] = os.path.join(mecab_dic_dir, 'mecabrc')
30
+ print(f"MECABRC configurado en: {os.environ['MECABRC']}")
31
+ return True
32
+
33
+ # Llamar a la función de configuración
34
+ if not setup_unidic():
35
+ print("No se pudo configurar UniDic. El programa podría no funcionar correctamente.")
36
+
37
+ # Descargar y configurar el modelo
38
  repo_id = "Blakus/Pedro_Lab_XTTS"
39
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
40
  os.makedirs(local_dir, exist_ok=True)
41
  files_to_download = ["config.json", "model.pth", "vocab.json"]
42
+
43
  for file_name in files_to_download:
44
  print(f"Downloading {file_name} from {repo_id}")
 
45
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
46
 
 
47
  config_path = os.path.join(local_dir, "config.json")
48
  checkpoint_path = os.path.join(local_dir, "model.pth")
49
  vocab_path = os.path.join(local_dir, "vocab.json")
 
56
 
57
  print("Modelo cargado en CPU")
58
 
59
+ # Funciones auxiliares
60
+ def split_text(text):
61
+ return re.split(r'(?<=[.!?])\s+', text)
 
 
62
 
63
+ def predict(prompt, language, reference_audio):
 
64
  try:
65
+ if len(prompt) < 2 or len(prompt) > 600:
66
+ return None, "El texto debe tener entre 2 y 600 caracteres."
 
 
67
 
68
+ sentences = split_text(prompt)
 
69
 
70
+ temperature = config.inference.get("temperature", 0.75)
71
+ repetition_penalty = config.inference.get("repetition_penalty", 5.0)
72
+ gpt_cond_len = config.inference.get("gpt_cond_len", 30)
73
+ gpt_cond_chunk_len = config.inference.get("gpt_cond_chunk_len", 4)
74
+ max_ref_length = config.inference.get("max_ref_length", 60)
 
75
 
76
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
77
+ audio_path=reference_audio,
78
  gpt_cond_len=gpt_cond_len,
79
  gpt_cond_chunk_len=gpt_cond_chunk_len,
80
  max_ref_length=max_ref_length
81
  )
82
 
 
83
  start_time = time.time()
84
+ combined_audio = AudioSegment.empty()
85
+
86
+ for sentence in sentences:
87
+ out = model.inference(
88
+ sentence,
89
+ language,
90
+ gpt_cond_latent,
91
+ speaker_embedding,
92
+ temperature=temperature,
93
+ repetition_penalty=repetition_penalty,
94
+ )
95
+ audio_segment = AudioSegment(
96
+ out["wav"].tobytes(),
97
+ frame_rate=24000,
98
+ sample_width=2,
99
+ channels=1
100
+ )
101
+ combined_audio += audio_segment
102
+ combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
103
+
104
  inference_time = time.time() - start_time
105
 
106
+ output_path = "output.wav"
107
+ combined_audio.export(output_path, format="wav")
108
 
109
+ audio_length = len(combined_audio) / 1000 # duración del audio en segundos
 
110
  real_time_factor = inference_time / audio_length
111
 
112
  metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
113
  metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
114
 
115
+ return output_path, metrics_text
116
 
117
  except Exception as e:
118
  print(f"Error detallado: {str(e)}")
119
+ return None, f"Error: {str(e)}"
120
+
121
+ # Configuración de la interfaz de Gradio
122
+ supported_languages = ["es", "en"]
123
+ reference_audios = [
124
+ "serio.wav",
125
+ "neutral.wav",
126
+ "alegre.wav",
127
+ ]
128
+
129
+ theme = gr.themes.Soft(
130
+ primary_hue="blue",
131
+ secondary_hue="gray",
132
+ ).set(
133
+ body_background_fill='*neutral_100',
134
+ body_background_fill_dark='*neutral_900',
135
+ )
136
+
137
+ description = """
138
+ # Sintetizador de voz de Pedro Labattaglia 🎙️
139
+
140
+ Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
141
+
142
+ ## Cómo usarlo:
143
+ - Elija el idioma (Español o Inglés)
144
+ - Elija un audio de referencia de la lista
145
+ - Escriba el texto que desea sintetizar
146
+ - Presione generar voz
147
+ """
148
+
149
+ # Interfaz de Gradio
150
+ with gr.Blocks(theme=theme) as demo:
151
+ gr.Markdown(description)
152
 
153
+ with gr.Row():
154
+ gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
155
 
 
 
 
 
156
  with gr.Row():
157
+ with gr.Column(scale=2):
158
+ language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
159
+ reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
160
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
161
+ generate_button = gr.Button("Generar voz", variant="primary")
162
+
163
+ with gr.Column(scale=1):
164
+ generated_audio = gr.Audio(label="Audio generado", interactive=False)
165
+ metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
166
+
 
 
 
 
 
 
 
 
167
  generate_button.click(
168
  predict,
169
+ inputs=[input_text, language_selector, reference_audio],
170
+ outputs=[generated_audio, metrics_output]
171
  )
172
 
173
+ if __name__ == "__main__":
174
+ demo.launch()