Blakus commited on
Commit
e0e731e
·
verified ·
1 Parent(s): f7d0739

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -95
app.py CHANGED
@@ -1,28 +1,52 @@
1
- import os
2
- import re
 
 
 
 
3
  import time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  import gradio as gr
 
5
  from pydub import AudioSegment
 
6
  from TTS.api import TTS
7
  from TTS.tts.configs.xtts_config import XttsConfig
8
  from TTS.tts.models.xtts import Xtts
9
  from TTS.utils.generic_utils import get_user_data_dir
10
- from huggingface_hub import hf_hub_download
11
 
12
- # Configuración inicial
13
- os.environ["COQUI_TOS_AGREED"] = "1"
14
- os.system('python -m unidic download')
 
 
15
 
16
- # Descargar y configurar el modelo
17
  repo_id = "Blakus/Pedro_Lab_XTTS"
18
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
19
  os.makedirs(local_dir, exist_ok=True)
20
  files_to_download = ["config.json", "model.pth", "vocab.json"]
21
-
22
  for file_name in files_to_download:
23
  print(f"Downloading {file_name} from {repo_id}")
 
24
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
25
 
 
26
  config_path = os.path.join(local_dir, "config.json")
27
  checkpoint_path = os.path.join(local_dir, "model.pth")
28
  vocab_path = os.path.join(local_dir, "vocab.json")
@@ -35,17 +59,24 @@ model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_
35
 
36
  print("Modelo cargado en CPU")
37
 
38
- # Funciones auxiliares
39
- def split_text(text):
40
- return re.split(r'(?<=[.!?])\s+', text)
 
 
41
 
42
- def predict(prompt, language, reference_audio):
 
43
  try:
44
- if len(prompt) < 2 or len(prompt) > 600:
45
- return None, "El texto debe tener entre 2 y 600 caracteres."
 
 
46
 
47
- sentences = split_text(prompt)
 
48
 
 
49
  temperature = config.inference.get("temperature", 0.75)
50
  repetition_penalty = config.inference.get("repetition_penalty", 5.0)
51
  gpt_cond_len = config.inference.get("gpt_cond_len", 30)
@@ -53,101 +84,57 @@ def predict(prompt, language, reference_audio):
53
  max_ref_length = config.inference.get("max_ref_length", 60)
54
 
55
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
56
- audio_path=reference_audio,
57
  gpt_cond_len=gpt_cond_len,
58
  gpt_cond_chunk_len=gpt_cond_chunk_len,
59
  max_ref_length=max_ref_length
60
  )
61
 
62
- start_time = time.time()
63
- combined_audio = AudioSegment.empty()
64
-
65
- for sentence in sentences:
66
- out = model.inference(
67
- sentence,
68
- language,
69
- gpt_cond_latent,
70
- speaker_embedding,
71
- temperature=temperature,
72
- repetition_penalty=repetition_penalty,
73
- )
74
- audio_segment = AudioSegment(
75
- out["wav"].tobytes(),
76
- frame_rate=24000,
77
- sample_width=2,
78
- channels=1
79
- )
80
- combined_audio += audio_segment
81
- combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio
82
-
83
- inference_time = time.time() - start_time
84
 
85
- output_path = "output.wav"
86
- combined_audio.export(output_path, format="wav")
87
 
88
- audio_length = len(combined_audio) / 1000 # duración del audio en segundos
89
- real_time_factor = inference_time / audio_length
90
 
91
- metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
92
- metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
93
-
94
- return output_path, metrics_text
95
 
96
  except Exception as e:
97
  print(f"Error detallado: {str(e)}")
98
- return None, f"Error: {str(e)}"
99
-
100
- # Configuración de la interfaz de Gradio
101
- supported_languages = ["es", "en"]
102
- reference_audios = [
103
- "serio.wav",
104
- "neutral.wav",
105
- "alegre.wav",
106
- ]
107
-
108
- theme = gr.themes.Soft(
109
- primary_hue="blue",
110
- secondary_hue="gray",
111
- ).set(
112
- body_background_fill='*neutral_100',
113
- body_background_fill_dark='*neutral_900',
114
- )
115
-
116
- description = """
117
- # Sintetizador de voz de Pedro Labattaglia 🎙️
118
-
119
- Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
120
-
121
- ## Cómo usarlo:
122
- - Elija el idioma (Español o Inglés)
123
- - Elija un audio de referencia de la lista
124
- - Escriba el texto que desea sintetizar
125
- - Presione generar voz
126
- """
127
-
128
- # Interfaz de Gradio
129
- with gr.Blocks(theme=theme) as demo:
130
- gr.Markdown(description)
131
-
132
- with gr.Row():
133
- gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250)
134
 
 
 
 
 
135
  with gr.Row():
136
- with gr.Column(scale=2):
137
- language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
138
- reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
139
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
140
- generate_button = gr.Button("Generar voz", variant="primary")
141
-
142
- with gr.Column(scale=1):
143
- generated_audio = gr.Audio(label="Audio generado", interactive=False)
144
- metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")
145
-
 
 
 
 
 
 
 
 
146
  generate_button.click(
147
  predict,
148
- inputs=[input_text, language_selector, reference_audio],
149
- outputs=[generated_audio, metrics_output]
150
  )
151
 
152
- if __name__ == "__main__":
153
- demo.launch()
 
1
+ import sys
2
+ import io, os, stat
3
+ import subprocess
4
+ import random
5
+ from zipfile import ZipFile
6
+ import uuid
7
  import time
8
+ import torch
9
+ import torchaudio
10
+
11
+ # Mantenemos la descarga de MeCab
12
+ os.system('python -m unidic download')
13
+
14
+ # Mantenemos el acuerdo de CPML
15
+ os.environ["COQUI_TOS_AGREED"] = "1"
16
+
17
+ import langid
18
+ import base64
19
+ import csv
20
+ from io import StringIO
21
+ import datetime
22
+ import re
23
+
24
  import gradio as gr
25
+ from scipy.io.wavfile import write
26
  from pydub import AudioSegment
27
+
28
  from TTS.api import TTS
29
  from TTS.tts.configs.xtts_config import XttsConfig
30
  from TTS.tts.models.xtts import Xtts
31
  from TTS.utils.generic_utils import get_user_data_dir
 
32
 
33
+ HF_TOKEN = os.environ.get("HF_TOKEN")
34
+
35
+ from huggingface_hub import hf_hub_download
36
+ import os
37
+ from TTS.utils.manage import get_user_data_dir
38
 
39
+ # Mantenemos la autenticación y descarga del modelo
40
  repo_id = "Blakus/Pedro_Lab_XTTS"
41
  local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
42
  os.makedirs(local_dir, exist_ok=True)
43
  files_to_download = ["config.json", "model.pth", "vocab.json"]
 
44
  for file_name in files_to_download:
45
  print(f"Downloading {file_name} from {repo_id}")
46
+ local_file_path = os.path.join(local_dir, file_name)
47
  hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
48
 
49
+ # Cargamos configuración y modelo
50
  config_path = os.path.join(local_dir, "config.json")
51
  checkpoint_path = os.path.join(local_dir, "model.pth")
52
  vocab_path = os.path.join(local_dir, "vocab.json")
 
59
 
60
  print("Modelo cargado en CPU")
61
 
62
+ # Mantenemos variables globales y funciones auxiliares
63
+ DEVICE_ASSERT_DETECTED = 0
64
+ DEVICE_ASSERT_PROMPT = None
65
+ DEVICE_ASSERT_LANG = None
66
+ supported_languages = config.languages
67
 
68
+ # Función de inferencia usando parámetros predeterminados del archivo de configuración
69
+ def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
70
  try:
71
+ if use_mic:
72
+ speaker_wav = mic_file_path
73
+ else:
74
+ speaker_wav = audio_file_pth
75
 
76
+ if len(prompt) < 2 or len(prompt) > 200:
77
+ return None, None, "El texto debe tener entre 2 y 200 caracteres."
78
 
79
+ # Usamos los valores de la configuración predeterminada
80
  temperature = config.inference.get("temperature", 0.75)
81
  repetition_penalty = config.inference.get("repetition_penalty", 5.0)
82
  gpt_cond_len = config.inference.get("gpt_cond_len", 30)
 
84
  max_ref_length = config.inference.get("max_ref_length", 60)
85
 
86
  gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
87
+ audio_path=speaker_wav,
88
  gpt_cond_len=gpt_cond_len,
89
  gpt_cond_chunk_len=gpt_cond_chunk_len,
90
  max_ref_length=max_ref_length
91
  )
92
 
93
+ out = model.inference(
94
+ prompt,
95
+ language,
96
+ gpt_cond_latent,
97
+ speaker_embedding,
98
+ temperature=temperature,
99
+ repetition_penalty=repetition_penalty,
100
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
+ torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
 
103
 
104
+ metrics_text = f"Tiempo de generación: {out['inference_time']:.2f} segundos\n"
105
+ metrics_text += f"Factor de tiempo real: {out['inference_time'] / (len(out['wav']) / 24000):.2f}"
106
 
107
+ return gr.make_waveform("output.wav"), "output.wav", metrics_text
 
 
 
108
 
109
  except Exception as e:
110
  print(f"Error detallado: {str(e)}")
111
+ return None, None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ # Interfaz de Gradio actualizada sin sliders
114
+ with gr.Blocks(theme=gr.themes.Base()) as demo:
115
+ gr.Markdown("# Sintetizador de Voz XTTS")
116
+
117
  with gr.Row():
118
+ with gr.Column():
 
 
119
  input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
120
+ language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
121
+ audio_file = gr.Audio(label="Audio de referencia", type="filepath")
122
+ use_mic = gr.Checkbox(label="Usar micrófono")
123
+ mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
124
+
125
+ use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
126
+
127
+ generate_button = gr.Button("Generar voz")
128
+
129
+ with gr.Column():
130
+ output_audio = gr.Audio(label="Audio generado")
131
+ waveform = gr.Image(label="Forma de onda")
132
+ metrics = gr.Textbox(label="Métricas")
133
+
134
  generate_button.click(
135
  predict,
136
+ inputs=[input_text, language, audio_file, mic_file, use_mic],
137
+ outputs=[waveform, output_audio, metrics]
138
  )
139
 
140
+ demo.launch(debug=True)