File size: 7,426 Bytes
7ff2ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from librosa.util import pad_center
from scipy.signal import get_window


class STFT(torch.nn.Module):
    def __init__(
        self,
        filter_length=1024,
        hop_length=512,
        win_length: Optional[int] = None,
        window="hann",
        use_torch_stft=True,
    ):
        """
        This module implements an STFT using 1D convolution and 1D transpose convolutions.
        This is a bit tricky so there are some cases that probably won't work as working
        out the same sizes before and after in all overlap add setups is tough. Right now,
        this code should work with hop lengths that are half the filter length (50% overlap
        between frames).

        Keyword Arguments:
            filter_length {int} -- Length of filters used (default: {1024})
            hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
            win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
                equals the filter length). (default: {None})
            window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
                (default: {'hann'})
        """
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.pad_amount = int(self.filter_length / 2)
        self.win_length = win_length
        self.hann_window = {}
        self.use_torch_stft = use_torch_stft

        if use_torch_stft:
            return

        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack(
            [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
        )
        forward_basis = torch.FloatTensor(fourier_basis)
        inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))

        if win_length is None or not win_length:
            win_length = filter_length
        assert filter_length >= win_length

        # get window and zero center pad it to filter_length
        fft_window = get_window(window, win_length, fftbins=True)
        fft_window = pad_center(fft_window, size=filter_length)
        fft_window = torch.from_numpy(fft_window).float()

        # window the bases
        forward_basis *= fft_window
        inverse_basis = (inverse_basis.T * fft_window).T

        self.register_buffer("forward_basis", forward_basis.float())
        self.register_buffer("inverse_basis", inverse_basis.float())
        self.register_buffer("fft_window", fft_window.float())

    def __call__(
        self,
        input_data: torch.Tensor,
        keyshift: int = 0,
        speed: int = 1,
        center: bool = True,
    ) -> torch.Tensor:
        return super().__call__(input_data, keyshift, speed, center)

    def transform(
        self,
        input_data: torch.Tensor,
        return_phase=False,
    ) -> Tuple[Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]]:
        """Take input data (audio) to STFT domain.

        Arguments:
            input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)

        Returns:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch,
                num_frequencies, num_frames)
        """
        input_data = F.pad(
            input_data,
            (self.pad_amount, self.pad_amount),
            mode="reflect",
        )
        forward_transform = input_data.unfold(
            1, self.filter_length, self.hop_length
        ).permute(0, 2, 1)
        forward_transform = torch.matmul(self.forward_basis, forward_transform)
        cutoff = int((self.filter_length / 2) + 1)
        real_part = forward_transform[:, :cutoff, :]
        imag_part = forward_transform[:, cutoff:, :]
        magnitude = torch.sqrt(real_part**2 + imag_part**2)
        if return_phase:
            phase = torch.atan2(imag_part.data, real_part.data)
            return magnitude, phase
        else:
            return magnitude

    def inverse(
        self,
        magnitude: torch.Tensor,
        phase: torch.Tensor,
    ) -> torch.Tensor:
        """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
        by the ```transform``` function.

        Arguments:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch,
                num_frequencies, num_frames)

        Returns:
            inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        """
        cat = torch.cat(
            [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
        )
        fold = torch.nn.Fold(
            output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
            kernel_size=(1, self.filter_length),
            stride=(1, self.hop_length),
        )
        inverse_transform = torch.matmul(self.inverse_basis, cat)
        inverse_transform: torch.Tensor = fold(inverse_transform)[
            :, 0, 0, self.pad_amount : -self.pad_amount
        ]
        window_square_sum = (
            self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
        )
        window_square_sum = fold(window_square_sum)[
            :, 0, 0, self.pad_amount : -self.pad_amount
        ]
        inverse_transform /= window_square_sum
        return inverse_transform

    def forward(
        self,
        input_data: torch.Tensor,
        keyshift: int = 0,
        speed: int = 1,
        center: bool = True,
    ) -> torch.Tensor:
        factor = 2 ** (keyshift / 12)
        n_fft_new = int(np.round(self.filter_length * factor))
        win_length_new = int(np.round(self.win_length * factor))
        hop_length_new = int(np.round(self.hop_length * speed))
        if self.use_torch_stft:
            keyshift_key = str(keyshift) + "_" + str(input_data.device)
            if keyshift_key not in self.hann_window:
                self.hann_window[keyshift_key] = torch.hann_window(
                    self.win_length,
                ).to(input_data.device)
            fft = torch.stft(
                input_data,
                n_fft=n_fft_new,
                hop_length=hop_length_new,
                win_length=win_length_new,
                window=self.hann_window[keyshift_key],
                center=center,
                return_complex=True,
            )
            return torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
        return self.transform(input_data)
        """Take input data (audio) to STFT domain and then back to audio.

        Arguments:
            input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)

        Returns:
            reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        reconstruction = self.inverse(
            self.transform(input_data, return_phase=True),
        )
        return reconstruction
        """