File size: 7,868 Bytes
7ff2ba3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import argparse
import os
import sys
import json
import shutil
from multiprocessing import cpu_count
import torch
# TODO: move device selection into rvc
import logging
logger = logging.getLogger(__name__)
version_config_list = [
"v1/32k.json",
"v1/40k.json",
"v1/48k.json",
"v2/48k.json",
"v2/32k.json",
]
def singleton_variable(func):
def wrapper(*args, **kwargs):
if wrapper.instance is None:
wrapper.instance = func(*args, **kwargs)
return wrapper.instance
wrapper.instance = None
return wrapper
@singleton_variable
class Config:
def __init__(self):
self.device = "cuda:0"
self.is_half = True
self.use_jit = False
self.n_cpu = 0
self.gpu_name = None
self.json_config = self.load_config_json()
self.gpu_mem = None
(
self.python_cmd,
self.listen_port,
self.global_link,
self.noparallel,
self.noautoopen,
self.dml,
self.nocheck,
self.update,
) = self.arg_parse()
self.instead = ""
self.preprocess_per = 3.7
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
@staticmethod
def load_config_json() -> dict:
d = {}
for config_file in version_config_list:
p = f"configs/inuse/{config_file}"
if not os.path.exists(p):
shutil.copy(f"configs/{config_file}", p)
with open(f"configs/inuse/{config_file}", "r") as f:
d[config_file] = json.load(f)
return d
@staticmethod
def arg_parse() -> tuple:
exe = sys.executable or "python"
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
parser.add_argument(
"--global_link", action="store_true", help="Generate a global proxy link"
)
parser.add_argument(
"--noparallel", action="store_true", help="Disable parallel processing"
)
parser.add_argument(
"--noautoopen",
action="store_true",
help="Do not open in browser automatically",
)
parser.add_argument(
"--dml",
action="store_true",
help="torch_dml",
)
parser.add_argument(
"--nocheck", action="store_true", help="Run without checking assets"
)
parser.add_argument(
"--update", action="store_true", help="Update to latest assets"
)
cmd_opts = parser.parse_args()
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
return (
cmd_opts.pycmd,
cmd_opts.port,
cmd_opts.global_link,
cmd_opts.noparallel,
cmd_opts.noautoopen,
cmd_opts.dml,
cmd_opts.nocheck,
cmd_opts.update,
)
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# check `getattr` and try it for compatibility
@staticmethod
def has_mps() -> bool:
if not torch.backends.mps.is_available():
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
@staticmethod
def has_xpu() -> bool:
if hasattr(torch, "xpu") and torch.xpu.is_available():
return True
else:
return False
def use_fp32_config(self):
for config_file in version_config_list:
self.json_config[config_file]["train"]["fp16_run"] = False
with open(f"configs/inuse/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/inuse/{config_file}", "w") as f:
f.write(strr)
logger.info("overwrite " + config_file)
self.preprocess_per = 3.0
logger.info("overwrite preprocess_per to %d" % (self.preprocess_per))
def device_config(self):
if torch.cuda.is_available():
if self.has_xpu():
self.device = self.instead = "xpu:0"
self.is_half = True
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "P10" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
logger.info("Found GPU %s, force to fp32", self.gpu_name)
self.is_half = False
self.use_fp32_config()
else:
logger.info("Found GPU %s", self.gpu_name)
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
self.preprocess_per = 3.0
elif self.has_mps():
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "mps"
self.is_half = False
self.use_fp32_config()
else:
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "cpu"
self.is_half = False
self.use_fp32_config()
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem is not None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
if self.dml:
logger.info("Use DirectML instead")
import torch_directml
self.device = torch_directml.device(torch_directml.default_device())
self.is_half = False
else:
if self.instead:
logger.info(f"Use {self.instead} instead")
logger.info(
"Half-precision floating-point: %s, device: %s"
% (self.is_half, self.device)
)
return x_pad, x_query, x_center, x_max
@singleton_variable
class CPUConfig:
def __init__(self):
self.device = "cpu"
self.is_half = False
self.use_jit = False
self.n_cpu = 1
self.gpu_name = None
self.json_config = self.load_config_json()
self.gpu_mem = None
self.instead = "cpu"
self.preprocess_per = 3.7
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
@staticmethod
def load_config_json() -> dict:
d = {}
for config_file in version_config_list:
with open(f"configs/{config_file}", "r") as f:
d[config_file] = json.load(f)
return d
def use_fp32_config(self):
for config_file in version_config_list:
self.json_config[config_file]["train"]["fp16_run"] = False
self.preprocess_per = 3.0
def device_config(self):
self.use_fp32_config()
if self.n_cpu == 0:
self.n_cpu = cpu_count()
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
return x_pad, x_query, x_center, x_max
|