File size: 4,904 Bytes
7ff2ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import typing
import os

import librosa
import numpy as np
import onnxruntime

from rvc.f0 import (
    PM,
    Harvest,
    Dio,
    F0Predictor,
)


class Model:
    def __init__(

        self,

        path: typing.Union[str, bytes, os.PathLike],

        device: typing.Literal["cpu", "cuda", "dml"] = "cpu",

    ):
        if device == "cpu":
            providers = ["CPUExecutionProvider"]
        elif device == "cuda":
            providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
        elif device == "dml":
            providers = ["DmlExecutionProvider"]
        else:
            raise RuntimeError("Unsportted Device")
        self.model = onnxruntime.InferenceSession(path, providers=providers)


class ContentVec(Model):
    def __init__(

        self,

        vec_path: typing.Union[str, bytes, os.PathLike],

        device: typing.Literal["cpu", "cuda", "dml"] = "cpu",

    ):
        super().__init__(vec_path, device)

    def __call__(self, wav: np.ndarray[typing.Any, np.dtype]):
        return self.forward(wav)

    def forward(self, wav: np.ndarray[typing.Any, np.dtype]):
        if wav.ndim == 2:  # double channels
            wav = wav.mean(-1)
        assert wav.ndim == 1, wav.ndim
        wav = np.expand_dims(np.expand_dims(wav, 0), 0)
        onnx_input = {self.model.get_inputs()[0].name: wav}
        logits = self.model.run(None, onnx_input)[0]
        return logits.transpose(0, 2, 1)


predictors: typing.Dict[str, F0Predictor] = {
    "pm": PM,
    "harvest": Harvest,
    "dio": Dio,
}


def get_f0_predictor(

    f0_method: str, hop_length: int, sampling_rate: int

) -> F0Predictor:
    return predictors[f0_method](hop_length=hop_length, sampling_rate=sampling_rate)


class RVC(Model):
    def __init__(

        self,

        model_path: typing.Union[str, bytes, os.PathLike],

        hop_len=512,

        vec_path: typing.Union[str, bytes, os.PathLike] = "vec-768-layer-12.onnx",

        device: typing.Literal["cpu", "cuda", "dml"] = "cpu",

    ):
        super().__init__(model_path, device)
        self.vec_model = ContentVec(vec_path, device)
        self.hop_len = hop_len

    def infer(

        self,

        wav: np.ndarray[typing.Any, np.dtype],

        wav_sr: int,

        model_sr: int = 40000,

        sid: int = 0,

        f0_method="dio",

        f0_up_key=0,

    ) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
        f0_min = 50
        f0_max = 1100
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)
        f0_predictor = get_f0_predictor(
            f0_method,
            self.hop_len,
            model_sr,
        )
        org_length = len(wav)
        if org_length / wav_sr > 50.0:
            raise RuntimeError("wav max length exceeded")

        hubert = self.vec_model(librosa.resample(wav, orig_sr=wav_sr, target_sr=16000))
        hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
        hubert_length = hubert.shape[1]

        pitchf = f0_predictor.compute_f0(wav, hubert_length)
        pitchf = pitchf * 2 ** (f0_up_key / 12)
        pitch = pitchf.copy()
        f0_mel = 1127 * np.log(1 + pitch / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
            f0_mel_max - f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        pitch = np.rint(f0_mel).astype(np.int64)

        pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
        pitch = pitch.reshape(1, len(pitch))
        ds = np.array([sid]).astype(np.int64)

        rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
        hubert_length = np.array([hubert_length]).astype(np.int64)

        out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()

        out_wav = np.pad(out_wav, (0, 2 * self.hop_len), "constant")

        return out_wav[0:org_length]

    def forward(

        self,

        hubert: np.ndarray[typing.Any, np.dtype[np.float32]],

        hubert_length: int,

        pitch: np.ndarray[typing.Any, np.dtype[np.int64]],

        pitchf: np.ndarray[typing.Any, np.dtype[np.float32]],

        ds: np.ndarray[typing.Any, np.dtype[np.int64]],

        rnd: np.ndarray[typing.Any, np.dtype[np.float32]],

    ) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
        onnx_input = {
            self.model.get_inputs()[0].name: hubert,
            self.model.get_inputs()[1].name: hubert_length,
            self.model.get_inputs()[2].name: pitch,
            self.model.get_inputs()[3].name: pitchf,
            self.model.get_inputs()[4].name: ds,
            self.model.get_inputs()[5].name: rnd,
        }
        return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)