|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
|
|
class F0Predictor(object):
|
|
def __init__(
|
|
self,
|
|
hop_length=512,
|
|
f0_min=50,
|
|
f0_max=1100,
|
|
sampling_rate=44100,
|
|
device: Optional[str] = None,
|
|
):
|
|
self.hop_length = hop_length
|
|
self.f0_min = f0_min
|
|
self.f0_max = f0_max
|
|
self.sampling_rate = sampling_rate
|
|
if device is None:
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
self.device = device
|
|
|
|
def compute_f0(
|
|
self,
|
|
wav: np.ndarray,
|
|
p_len: Optional[int] = None,
|
|
filter_radius: Optional[Union[int, float]] = None,
|
|
): ...
|
|
|
|
def _interpolate_f0(self, f0: np.ndarray):
|
|
"""
|
|
对F0进行插值处理
|
|
"""
|
|
|
|
data = np.reshape(f0, (f0.size, 1))
|
|
|
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
|
vuv_vector[data > 0.0] = 1.0
|
|
vuv_vector[data <= 0.0] = 0.0
|
|
|
|
ip_data = data
|
|
|
|
frame_number = data.size
|
|
last_value = 0.0
|
|
for i in range(frame_number):
|
|
if data[i] <= 0.0:
|
|
j = i + 1
|
|
for j in range(i + 1, frame_number):
|
|
if data[j] > 0.0:
|
|
break
|
|
if j < frame_number - 1:
|
|
if last_value > 0.0:
|
|
step = (data[j] - data[i - 1]) / float(j - i)
|
|
for k in range(i, j):
|
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
|
else:
|
|
for k in range(i, j):
|
|
ip_data[k] = data[j]
|
|
else:
|
|
for k in range(i, frame_number):
|
|
ip_data[k] = last_value
|
|
else:
|
|
ip_data[i] = data[i]
|
|
last_value = data[i]
|
|
|
|
return ip_data[:, 0], vuv_vector[:, 0]
|
|
|
|
def _resize_f0(self, x: np.ndarray, target_len: int):
|
|
source = np.array(x)
|
|
source[source < 0.001] = np.nan
|
|
target = np.interp(
|
|
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
|
np.arange(0, len(source)),
|
|
source,
|
|
)
|
|
res = np.nan_to_num(target)
|
|
return res
|
|
|