rvc-ui / rvc /layers /encoders.py
Blane187's picture
Upload folder using huggingface_hub
7ff2ba3 verified
import math
from typing import Tuple, Optional
import torch
from torch import nn
from .attentions import MultiHeadAttention, FFN
from .norms import LayerNorm, WN
from .utils import sequence_mask
class Encoder(nn.Module):
def __init__(
self,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int = 1,
p_dropout: float = 0.0,
window_size: int = 10,
):
super(Encoder, self).__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for _ in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
return super().__call__(x, x_mask)
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for attn, norm1, ffn, norm2 in zip(
self.attn_layers,
self.norm_layers_1,
self.ffn_layers,
self.norm_layers_2,
):
y = attn(x, x, attn_mask)
y = self.drop(y)
x = norm1(x + y)
y = ffn(x, x_mask)
y = self.drop(y)
x = norm2(x + y)
x = x * x_mask
return x
class TextEncoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: float,
f0: bool = True,
):
super(TextEncoder, self).__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = float(p_dropout)
self.emb_phone = nn.Linear(in_channels, hidden_channels)
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
if f0 == True:
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
self.encoder = Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
float(p_dropout),
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def __call__(
self,
phone: torch.Tensor,
pitch: torch.Tensor,
lengths: torch.Tensor,
skip_head: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
return super().__call__(
phone,
pitch,
lengths,
skip_head=skip_head,
)
def forward(
self,
phone: torch.Tensor,
pitch: torch.Tensor,
lengths: torch.Tensor,
skip_head: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
x = self.emb_phone(phone)
if pitch is not None:
x += self.emb_pitch(pitch)
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
x = self.lrelu(x)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(
sequence_mask(lengths, x.size(2)),
1,
).to(x.dtype)
x = self.encoder(x * x_mask, x_mask)
if skip_head is not None:
head = int(skip_head)
x = x[:, :, head:]
x_mask = x_mask[:, :, head:]
stats: torch.Tensor = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class PosteriorEncoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
gin_channels=0,
):
super(PosteriorEncoder, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def __call__(
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
return super().__call__(x, x_lengths, g=g)
def forward(
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
x_mask = torch.unsqueeze(
sequence_mask(x_lengths, x.size(2)),
1,
).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
def remove_weight_norm(self):
self.enc.remove_weight_norm()
def __prepare_scriptable__(self):
for hook in self.enc._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.enc)
return self