from typing import Optional, List, Tuple import torch from torch import nn from torch.nn import Conv1d from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, weight_norm from .norms import WN from .utils import ( get_padding, call_weight_data_normal_if_Conv, ) LRELU_SLOPE = 0.1 class ResBlock1(torch.nn.Module): def __init__( self, channels: int, kernel_size: int = 3, dilation: List[int] = (1, 3, 5), ): super(ResBlock1, self).__init__() self.convs1 = nn.ModuleList() for d in dilation: self.convs1.append( weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=d, padding=get_padding(kernel_size, d), ) ), ) self.convs1.apply(call_weight_data_normal_if_Conv) self.convs2 = nn.ModuleList() for _ in dilation: self.convs2.append( weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ) self.convs2.apply(call_weight_data_normal_if_Conv) self.lrelu_slope = LRELU_SLOPE def __call__( self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: return super().__call__(x, x_mask=x_mask) def forward( self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, self.lrelu_slope) if x_mask is not None: xt = xt * x_mask xt = c1(xt) xt = F.leaky_relu(xt, self.lrelu_slope) if x_mask is not None: xt = xt * x_mask xt = c2(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) def __prepare_scriptable__(self): for l in self.convs1: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(l) for l in self.convs2: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(l) return self class ResBlock2(torch.nn.Module): """ Actually this module is not used currently because all configs specified "resblock": "1" """ def __init__( self, channels: int, kernel_size=3, dilation: List[int] = (1, 3), ): super(ResBlock2, self).__init__() self.convs = nn.ModuleList() for d in dilation: self.convs.append( weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=d, padding=get_padding(kernel_size, d), ) ), ) self.convs.apply(call_weight_data_normal_if_Conv) self.lrelu_slope = LRELU_SLOPE def __call__( self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: return super().__call__(x, x_mask=x_mask) def forward( self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: for c in self.convs: xt = F.leaky_relu(x, self.lrelu_slope) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) def __prepare_scriptable__(self): for l in self.convs: for hook in l._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(l) return self class ResidualCouplingLayer(nn.Module): def __init__( self, channels: int, hidden_channels: int, kernel_size: int, dilation_rate: int, n_layers: int, p_dropout: int = 0, gin_channels: int = 0, mean_only: bool = False, ): assert channels % 2 == 0, "channels should be divisible by 2" super(ResidualCouplingLayer, self).__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.half_channels = channels // 2 self.mean_only = mean_only self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) self.enc = WN( hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=float(p_dropout), gin_channels=gin_channels, ) self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) self.post.weight.data.zero_() self.post.bias.data.zero_() def __call__( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: return super().__call__(x, x_mask, g=g, reverse=reverse) def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) * x_mask h = self.enc(h, x_mask, g=g) stats = self.post(h) * x_mask if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) else: m = stats logs = torch.zeros_like(m) if not reverse: x1 = m + x1 * torch.exp(logs) * x_mask x = torch.cat([x0, x1], 1) logdet = torch.sum(logs, [1, 2]) return x, logdet x1 = (x1 - m) * torch.exp(-logs) * x_mask x = torch.cat([x0, x1], 1) return x, torch.zeros([1]) def remove_weight_norm(self): self.enc.remove_weight_norm() def __prepare_scriptable__(self): for hook in self.enc._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.enc) return self class ResidualCouplingBlock(nn.Module): class Flip(nn.Module): """ torch.jit.script() Compiled functions can't take variable number of arguments or use keyword-only arguments with defaults """ def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x, torch.zeros([1], device=x.device) def __init__( self, channels: int, hidden_channels: int, kernel_size: int, dilation_rate: int, n_layers: int, n_flows: int = 4, gin_channels: int = 0, ): super(ResidualCouplingBlock, self).__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for _ in range(n_flows): self.flows.append( ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(self.Flip()) def __call__( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> torch.Tensor: return super().__call__(x, x_mask, g=g, reverse=reverse) def forward( self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse: bool = False, ) -> torch.Tensor: if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x, _ = flow.forward(x, x_mask, g=g, reverse=reverse) return x def remove_weight_norm(self): for i in range(self.n_flows): self.flows[i * 2].remove_weight_norm() def __prepare_scriptable__(self): for i in range(self.n_flows): for hook in self.flows[i * 2]._forward_pre_hooks.values(): if ( hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm" ): torch.nn.utils.remove_weight_norm(self.flows[i * 2]) return self