File size: 18,695 Bytes
a9415a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
##### SAFE IMPUTATION #####

import pandas as pd
import numpy as np
from scipy import stats
import warnings
import streamlit as st
import base64

def outlier_per_col(df,col):
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    iqr = q3 - q1

    # Kolmogorov-Smirnov test to find the distribution of the data
    dist_name, p = stats.normaltest(df[col])[0], stats.normaltest(df[col])[1]

    # if p > 0.05 then the data is normally distributed
    # if p <= 0.05 then the data is not normally is distributed
    if p <= 0.05:
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        outlier_df = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
        outlier_per = (len(outlier_df) / len(df[col])) * 100
    else:
        z_score = np.abs(df[col] - df[col].mean()) / df[col].std()
        outlier_df = df[(z_score > 3)]
        outlier_per = len(outlier_df) / len(df[col]) * 100
    return outlier_per
def summary_stats(df,per_to_drop):
    summary_df = df.isna().sum().reset_index().rename(columns={'index': 'variable', 0: 'null'})
    summary_df['%null'] = (100 * summary_df['null'] / len(df)).round(2)
    summary_df = summary_df.merge(df.dtypes.reset_index().rename(columns={'index': 'variable', 0: 'type'}), on='variable')
    summary_df = summary_df.drop(columns=['null'])
    summary_df = summary_df.drop(summary_df[summary_df['%null'] > per_to_drop].index)
    df_numeric = df.select_dtypes(exclude='object')
    df_categorical = df.select_dtypes(include='object')
    if not df_numeric.empty:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            summary_df['outlier%'] = summary_df[summary_df['variable'].isin(df_numeric.columns)].apply(lambda x: outlier_per_col(df_numeric, x['variable']), axis=1)
    else:
        summary_df = pd.concat([summary_df, pd.DataFrame({'variable': [], 'outlier%': []})])
    summary_df = summary_df.merge((df.select_dtypes(exclude=['object']).nunique() / df.select_dtypes(exclude=['object']).count() * 100).reset_index().rename(columns={'index': 'variable', 0: 'unique%'}).round(2), on='variable', how='left').round(2)
    summary_df = summary_df.merge(df.mean(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'mean'}).round(2), on='variable', how='left')
    summary_df = summary_df.merge(df.std(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'standard deviation'}).round(2), on='variable', how='left')
    summary_df = (summary_df.merge(df.var(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'variance'}), on='variable', how='left').assign(variance=lambda x: x['variance'].apply(lambda y: "{:.2f}".format(y))))
    summary_df = summary_df.merge(df.skew(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'skewness'}).round(2), on='variable', how='left')
    summary_df = summary_df.merge(df.kurt(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'kurtosis'}).round(2), on='variable', how='left')
    summary_df = summary_df.merge(df.min(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'min'}), on='variable', how='left')
    summary_df = summary_df.merge(df.max(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'max'}), on='variable', how='left')
    summary_df['range'] = summary_df['max'] - summary_df['min']
    if not df_numeric.empty:
        summary_df = summary_df.merge((df.describe().loc['75%'].T - df.describe().loc['25%'].T).reset_index().rename(columns={'index': 'variable', 0: 'iqr'}), on='variable', how='left')
    else:
        summary_df = pd.concat([summary_df, pd.DataFrame({'variable': [], 'iqr': []})])
    summary_df = summary_df.merge(df.median(numeric_only=True).reset_index().rename(columns={'index': 'variable', 0: 'median'}), on='variable', how='left')
    if not df_categorical.empty:
        summary_df = summary_df.merge(df.select_dtypes(include=['object']).mode().iloc[0].reset_index().rename(columns={'index': 'variable', 0: 'mode'}), on='variable', how='left')
        summary_df = summary_df.merge(df.select_dtypes(include=['object']).nunique().reset_index().rename(columns={'index': 'variable', 0: 'distinct count'}), on='variable', how='left')
    else:
        summary_df = pd.concat([summary_df, pd.DataFrame({'variable': [], 'mode': []})])
        summary_df = pd.concat([summary_df, pd.DataFrame({'variable': [], 'distinct count': []})])
    return summary_df


def mean_imputation(df, col):
    df[col].fillna(round(df[col].mean(), 2), inplace=True)

def median_imputation(df, col):
    median = df[col].median()
    df[col].fillna(round(median, 2), inplace=True)

def drop_rows(df, col):
    df.dropna(subset=[col], inplace=True)

def drop_column(df, col):
    df.drop(col, axis=1, inplace=True)

def mode_imputation(df, col):
    mode = df[col].mode()[0]
    df[col].fillna(mode, inplace=True)

def arbitrary_val(df, col, val):
    df[col].fillna(val, inplace=True)

def linear_interpolate(df, col):
    df[col].interpolate(method='linear', inplace=True)

def polynomial_interpolate(df, col):
    df[col].interpolate(method='polynomial', order=2, inplace=True)

def interpolate_padding_forward(df, col):
    df[col].fillna(method='ffill', inplace=True)

def interpolate_padding_backward(df, col):
    df[col].fillna(method='bfill', inplace=True)

def fill_0(df, col):
    df[col].fillna(0, inplace=True)

def remove_outliers(df, col):
    dist_name, p = stats.normaltest(df[col])[0], stats.normaltest(df[col])[1]
    if p <= 0.05:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3 - q1
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
    else:
        z_score = np.abs(df[col] - df[col].mean()) / df[col].std()
        df = df[(z_score < 3)]
    return df
def mean_outlier(df, col):
    dist_name, p = stats.normaltest(df[col])[0], stats.normaltest(df[col])[1]
    if p <= 0.05:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3 - q1
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        df[col][df[col] < lower_bound] = df[col].mean()
        df[col][df[col] > upper_bound] = df[col].mean()
    else:
        z_score = np.abs(df[col] - df[col].mean()) / df[col].std()
        df.loc[z_score > 3, col] = df[col].mean()
    return df

def median_outlier(df, col):
    dist_name, p = stats.normaltest(df[col])[0], stats.normaltest(df[col])[1]
    if p <= 0.05:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3 - q1
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        df[col][df[col] < lower_bound] = df[col].median()
        df[col][df[col] > upper_bound] = df[col].median()
    else:
        z_score = np.abs(df[col] - df[col].mean()) / df[col].std()
        df.loc[z_score > 3, col] = df[col].median()
    return df

def outlier_capping(df, col):
    dist_name, p = stats.normaltest(df[col])[0], stats.normaltest(df[col])[1]
    if p <= 0.05:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3-q1
        lower_bound = q1-1.5*iqr
        upper_bound = q1+1.5*iqr
        df[col] = np.where(df[col] >= upper_bound, upper_bound, np.where(df[col] <= lower_bound, lower_bound, df[col]))
    else:
        upper_limit = df[col].mean() + (3 * df[col].std())
        lower_limit = df[col].mean() - (3 * df[col].std())
        df[col] = np.where(df[col] >= upper_limit, upper_limit, np.where(df[col] <= lower_limit, lower_limit, df[col]))
    return df

def perform_treatment_missing(df, col, treatments):
    if treatments == 'mean':
        mean_imputation(df, col)
    elif treatments == 'median':
        median_imputation(df, col)
    elif treatments == 'drop row':
        drop_rows(df, col)
    elif treatments == 'drop column':
        drop_column(df, col)
    elif treatments == 'linear interpolation':
        linear_interpolate(df, col)
    elif treatments == 'polynomial interpolation':
        polynomial_interpolate(df, col)
    elif treatments == 'ffill':
        interpolate_padding_forward(df, col)
    elif treatments == 'bfill':
        interpolate_padding_backward(df, col)
    elif treatments == 'mode':
        mode_imputation(df, col)
    elif treatments == 'fill_0':
        fill_0(df, col)
    else:
        return df[col]

def perform_treatment_outlier(df, col, treatments):
    if treatments == 'remove':
        remove_outliers(df,col)
    elif treatments == 'mean':
        mean_outlier(df,col)
    elif treatments == 'median':
        median_imputation(df,col)
    elif treatments == 'capping':
        outlier_capping(df,col)
    else:
        return df[col]

def imputed_df(df,edited_df,identifier,flag,per_to_drop=None):
    if per_to_drop is not None:
        null_percentage = df.isnull().sum() / df.shape[0] * 100
        col_to_drop = null_percentage[null_percentage > per_to_drop].keys()
        df = df.drop(col_to_drop, axis=1)

    cols_with_one_unique = df.columns[df.nunique() == 1]
    df.drop(cols_with_one_unique, axis=1, inplace=True)

    for col in edited_df['variable'].to_list():
        perform_treatment_missing(df,col, edited_df.loc[edited_df['variable'] == col, 'Imputation method'].iloc[0])
        perform_treatment_outlier(df,col, edited_df.loc[edited_df['variable'] == col, 'Outlier Treatment'].iloc[0])
    return df

# flag = st.sidebar.selectbox("Flag Column", [None] + list(st.session_state.df.columns))
# identifier = st.sidebar.selectbox("Identifier Column", [None] + list(st.session_state.df.columns))

# numerical_columns = st.session_state.df.select_dtypes(include=['number']).columns.tolist()
# numerical_columns = [x for x in numerical_columns if x !=flag]
# categorical_columns = st.session_state.df.select_dtypes(include=['object', 'category']).columns.tolist()
# categorical_columns = [x for x in categorical_columns if x !=identifier]

# st.session_state.flag=flag
# st.session_state.identifier=identifier
st.title("Data Summary")

with st.expander("Data Inputs"):
    st.subheader("Data Inputs")
    ui_columns = st.columns((1, 1))
    columns = set(st.session_state.df.columns)
    with ui_columns[0]:
        flag = st.selectbox(
            label="Flag variable",
            options=list(columns),
            index=list(columns).index(st.session_state.flag) if 'flag' in st.session_state and st.session_state.flag is not None else 0
        )
        per_to_drop=st.slider(
            label= "Select missing % threshold to drop columns", 
            key="per_to_drop",
            min_value=0, max_value=100, value=st.session_state.per_to_drop if 'per_to_drop' in st.session_state else 80)

    with ui_columns[-1]:
        identifier = st.selectbox(
            label="Identifier",
            options=list(columns),
            index=list(columns).index(st.session_state.identifier) if 'identifier' in st.session_state and st.session_state.identifier is not None else 0
        ) 

# numerical_columns = st.session_state.df.select_dtypes(include=['number']).columns.tolist()
# numerical_columns = [x for x in numerical_columns if x !=flag]
# categorical_columns = st.session_state.df.select_dtypes(include=['object', 'category']).columns.tolist()
# categorical_columns = [x for x in categorical_columns if x !=identifier]
# st.session_state.numerical_columns=numerical_columns
# st.session_state.categorical_columns=categorical_columns
st.session_state.flag=flag
st.session_state.identifier=identifier

# st.subheader("Select Ordinal Columns:")
# with st.expander("Select Ordinal Columns:", expanded=True):
#     select_all_checkbox = st.checkbox("Select All", key="select_all_checkbox")

#     options = categorical_columns
    
#     # Checkboxes for each column
#     ordinal_columns = []
#     for option in options:
#         if select_all_checkbox or st.checkbox(option, key=f"checkbox_{option}"):
#             ordinal_columns.append(option)
#     st.session_state.ordinal_columns=list(ordinal_columns)

# nominal_columns=[x for x in categorical_columns if x not in ordinal_columns]
# st.session_state.numerical_columns=numerical_columns
# st.session_state.categorical_columns=categorical_columns
# st.session_state.ordinal_columns=ordinal_columns

#Ordinal columns order
# ordinal_col_dict = st.session_state.get("ordinal_col_dict", {})

# ordinal_col_dict = {}

# for col in ordinal_columns:
#     st.subheader(f"Ordering for Unique Values in {col}")

#     # Get unique values excluding NaN
#     unique_values = st.session_state.df[col].dropna().unique()

#     order_dict = {}

#     for val in unique_values:
#         order = st.number_input(f"Order for {val} in {col}", min_value=1, value=1)
#         order_dict[val] = order

#     ordinal_col_dict[col] = order_dict

# st.session_state.ordinal_col_dict = ordinal_col_dict

# User input for percentage threshold to drop columns
# per_to_drop = st.slider("Select Percentage Threshold to Drop Columns", min_value=0, max_value=100, value=10)
# st.session_state.per_to_drop = per_to_drop

summary_df = summary_stats(st.session_state.df, per_to_drop)
summary_df["Imputation method"]=None
summary_df["Outlier Treatment"]=None
summary_df["Imputation method"]=np.where(summary_df["type"]=='object','mode','mean')
summary_df["Outlier Treatment"]=np.where(summary_df["type"]=='object',summary_df["Outlier Treatment"],'capping')
summary_df = summary_df[~summary_df['variable'].isin([flag,identifier])]
st.session_state.summary_df=summary_df

st.subheader("Variable Summary")

IMPUTATION_OPTIONS = ["mean", "median", "linear interpolation", "polynomial interpolation", "ffill", "bfill","mode","fill_0"]
OUTLIER_OPTIONS = ["capping","remove", "mean", "median"]
NON_EDITABLE_COLUMNS = summary_df.columns.to_list()

def highlight_cols(s):
    color = "#ccc"
    return "background-color: %s" % color

column_config = {
    "variable": st.column_config.TextColumn(disabled=True, width="medium"),
    "type": st.column_config.TextColumn(disabled=True, width="medium"),
    "%null": st.column_config.NumberColumn(disabled=True),
    "unique%": st.column_config.NumberColumn(disabled=True),
    "outlier%": st.column_config.NumberColumn(disabled=True),
    "mean": st.column_config.NumberColumn(disabled=True),
    "standard deviation": st.column_config.NumberColumn(disabled=True),
    "variance": st.column_config.NumberColumn(disabled=True),
    "skewness": st.column_config.NumberColumn(disabled=True),
    "kurtosis": st.column_config.NumberColumn(disabled=True),
    "min": st.column_config.NumberColumn(disabled=True),
    "max": st.column_config.NumberColumn(disabled=True),
    "range": st.column_config.NumberColumn(disabled=True),
    "iqr": st.column_config.NumberColumn(disabled=True),
    "median": st.column_config.NumberColumn(disabled=True),
    "IV": st.column_config.NumberColumn(disabled=True),
    "mode": st.column_config.TextColumn(disabled=True),
    "distinct count": st.column_config.NumberColumn(disabled=True),
    "Imputation method": st.column_config.SelectboxColumn(
        options=IMPUTATION_OPTIONS, default=0
    ),
    "Outlier Treatment": st.column_config.SelectboxColumn(
        options=OUTLIER_OPTIONS, default=0
    )
}


with st.expander("Variables from the data"):
        edited_df = st.data_editor(
            st.session_state.summary_df
            .style.hide(axis="index")
            .applymap(highlight_cols, subset=NON_EDITABLE_COLUMNS),
            column_config=column_config,
        )
if st.button("Submit changes"):
    with st.spinner("Applying imputations"):
        st.divider()
        edited_df = st.session_state.summary_df.copy()  # Make a copy of the original DataFrame
        edited_df["Imputation method"] = st.session_state.summary_df["Imputation method"]  # Update the imputation method column
        edited_df["Outlier Treatment"] = st.session_state.summary_df["Outlier Treatment"]  # Update the outlier treatment method column
        
        imputed_df = imputed_df(st.session_state.df, edited_df, st.session_state.identifier, st.session_state.flag, st.session_state.per_to_drop)
        st.session_state.imputed_df = imputed_df
        st.markdown("Imputed DataFrame")
        st.dataframe(imputed_df.head(10))

# Add a download button for the imputed DataFrame
#if st.session_state.imputed_df is not None:
#    csv_data = st.session_state.imputed_df.to_csv(index=False).encode()
#    st.download_button(
#        label="Download Imputed DataFrame as CSV",
#        data=csv_data,
#        file_name="imputed_data.csv",
#       mime="text/csv"
#   )

# Add the download button after displaying the DataFrame
#if st.dataframe:
#    if st.button("Download Imputed Data"):
#        imputed_csv = imputed_df.to_csv(index=False)
#        b64 = base64.b64encode(imputed_csv.encode()).decode()
#        href = f'<a href="data:file/csv;base64,{b64}" download="imputed_data.csv">Download Imputed Data CSV File</a>'
#        st.markdown(href, unsafe_allow_html=True)

if "imputed_df" in st.session_state:
    if st.button("Download Imputed Data"):
        imputed_df = st.session_state.imputed_df
        imputed_csv = imputed_df.to_csv(index=False)
        b64 = base64.b64encode(imputed_csv.encode()).decode()
        href = f'<a href="data:file/csv;base64,{b64}" download="imputed_data.csv">Download Imputed Data CSV File</a>'
        st.markdown(href, unsafe_allow_html=True)




# Check if the "Submit changes" button has been clicked


# if st.button("Submit"):
#     st.write("Selected Columns and Ordinal Orders:")
#     st.write(ordinal_col_dict)

#     # Display summary stats
#     summary_df = summary_stats(st.session_state.df, per_to_drop)
#     st.write("Summary Stats:")
#     st.write(summary_df)

# # User input for specific column
# col_name = st.selectbox("Select a specific column name:", [None] + list(st.session_state.df.columns))

# # Display stats for the specified column
# if col_name in st.session_state.df.columns:
#     st.write(f"Stats for column '{col_name}':")    
#     # Extract relevant information from 'summary_df' for the specific column
#     col_summary = summary_df[summary_df['variable'] == col_name][['%null', 'type', 'outlier%', 'unique%', 'mean', 'standard deviation', 'variance', 'skewness', 'kurtosis', 'min', 'max', 'range', 'iqr', 'median', 'mode', 'distinct count']]
#     col_summary = col_summary.T.reset_index()
#     col_summary.columns = ['Stats', 'Value']
#     # Display the summary statistics as a table
#     st.table(col_summary)
# else:
#     st.warning("Please enter a valid column name.")