File size: 33,445 Bytes
a9415a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
from tqdm import tqdm
from matplotlib.ticker import MaxNLocator
import streamlit as st
import ast
from collections import defaultdict
from scipy.cluster.hierarchy import linkage, fcluster, dendrogram
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.preprocessing import LabelEncoder
#from kmodes.kmodes import KModes
import matplotlib.pyplot as plt
import seaborn as sns
#from kmodes.kprototypes import KPrototypes
import warnings
import pandas as pd
import numpy as np
from scipy import stats
import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import pdist
import os
import re
import time
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import numpy as np
import plotly.express as px
import base64
def tree_based_bin_data(df, column_name, dep_var, depth_of_tree):
df2 = df.copy()
df2 = df2.loc[df2[column_name].notnull()]
x = df2[column_name].values.reshape(-1, 1)
y = df2[dep_var].values
params = {'max_depth': range(2, depth_of_tree + 1), 'min_samples_split': [2, 3, 5, 10], 'min_samples_leaf': [int(np.ceil(0.05 * len(x)))]}
clf = DecisionTreeClassifier()
g_search = GridSearchCV(clf, param_grid=params, scoring='accuracy')
g_search.fit(x, y)
best_clf = g_search.best_estimator_
bin_edges = best_clf.tree_.threshold
bin_edges = sorted(set(bin_edges[bin_edges != -2]))
tree_based_binned_data = value_bin_data(df, column_name, bin_edges)
return tree_based_binned_data
def decile_bin_data(df, col, no_of_bins):
decile_binned_data = pd.qcut(df[col], no_of_bins, duplicates='drop')
return decile_binned_data
def value_bin_data(df, col, no_of_bins):
value_binned_data = pd.cut(df[col], no_of_bins, duplicates='drop')
return value_binned_data
def col_bin_summary_numerical(bin_df, col, dep_var=None):
unique_bin_edges = bin_df[col].unique()
df_new = pd.DataFrame({"bin_ranges": unique_bin_edges})
try:
df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={'index': 'bin_ranges', col: 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
except:
df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
if dep_var is not None:
df_new = df_new.merge(bin_df.groupby(col)[dep_var].sum().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges', how='left')
df_new = df_new.merge(bin_df.groupby(col)[dep_var].mean().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges', how='left')
df_new['Index'] = (100 * df_new['Mean_DV'] / bin_df['Y'].mean()).round()
df_new = df_new[['bin_ranges', 'count%', 'Event', 'Mean_DV', 'Index']]
df_new = df_new.sort_values(by='bin_ranges')
return df_new
def plot_chart(df, col, dep_var):
#fig = go.Figure()
df['bin_ranges_str'] = df['bin_ranges'].astype(str)
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Bar trace for Count%
fig.add_trace(
go.Bar(
x=df['bin_ranges_str'],
y=df['count%'],
name='Count%',
marker_color='#053057',
hovertemplate=(
f"Bin: %{{x}}<br>"
f"Count%: %{{y}}"
),
)
)
# Add the line trace for Index on the secondary y-axis
fig.add_trace(
go.Scatter(
x=df['bin_ranges_str'],
y=df['Index'],
mode='lines+markers',
name='Index',
marker=dict(color="#8ac4f8"),
hovertemplate=(
f"Bin: %{{x}}<br>"
f"Index%: %{{y}}"
),
),
secondary_y=True
)
# Update layout
fig.update_layout(
title=f'Distribution of {col}',
xaxis=dict(title='Bin_ranges'),
yaxis=dict(title='Count%', color='#053057'),
yaxis2=dict(title='Index', color="#8ac4f8", overlaying='y', side='right'),
legend=dict(x=1.02, y=0.98),
hovermode='x'
)
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
return fig
# def plot_chart(df, col, dep_var=None):
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # Convert Interval type to string
# df['bin_ranges_str'] = df['bin_ranges'].astype(str)
# ax1.bar(df['bin_ranges_str'], df['count%'], color='b', alpha=0.7, label='Count%')
# ax1.set_xlabel('Bin Ranges')
# ax1.set_ylabel('Count%', color='b')
# if dep_var is not None:
# ax2 = ax1.twinx()
# ax2.plot(df['bin_ranges_str'], df['Index'], color='r', marker='o', label='Index')
# ax2.set_ylabel('Index', color='r')
# ax1.set_title(f'Distribution of {col}')
# ax1.legend(loc='upper left')
# return st.plotly_chart(fig)
def create_numerical_binned_data(df, col, func,no_of_bins=None,dep_var=None, depth=None):
df_org = df.copy()
if dep_var is not None:
df_org[dep_var] = df_org[dep_var].astype('int64')
df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1)
if func == 'tree':
bin_df = tree_based_bin_data(df, col, dep_var, depth)
elif func == 'decile':
bin_df = decile_bin_data(df_num, col, 10)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1)
else:
df_num = df_org.select_dtypes(include=[np.number])
if func == 'decile':
bin_df = decile_bin_data(df_num, col, no_of_bins)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
df_summary = col_bin_summary_numerical(bin_df,col, dep_var)
return df_summary
def create_numerical_binned_data1(df, col, func,no_of_bins,dep_var,depth=None):
df_org = df.copy()
df_org[dep_var] = df_org[dep_var].astype('int64')
df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1)
if func == 'tree':
bin_df = tree_based_bin_data(df, col, dep_var, depth)
elif func == 'decile':
bin_df = decile_bin_data(df_num, col, no_of_bins)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1)
binned_data=pd.DataFrame()
binned_data[col]=df_org[col]
unique_bins = bin_df[col].unique()
for bin_value in unique_bins:
bin_column_name = f"{col}_{bin_value}"
binned_data[bin_column_name] = np.where(binned_data[col] == bin_value, df_org[col], 0)
return binned_data
#Categorical cols binning
def woe_iv(df, column_name, dep_var, no_of_bins):
y0 = df[dep_var].value_counts()[0]
y1 = df[dep_var].value_counts()[1]
if df[column_name].nunique() < 10:
data = pd.Series(pd.factorize(df[column_name])[0] + 1, index=df.index).rename('{}'.format(column_name)).apply(lambda x: f'bin{x}')
else:
df_woe_iv = (pd.crosstab(df[column_name], df[dep_var], normalize='columns').assign(woe=lambda dfx: np.log((dfx[1] + (0.5 / y1)) / (dfx[0] + (0.5 / y0)))).assign(iv=lambda dfx: (dfx['woe'] * (dfx[1] - dfx[0]))))
woe_map = df_woe_iv['woe'].to_dict()
woe_col = df[column_name].map(woe_map)
data = pd.qcut(woe_col, no_of_bins, duplicates='drop')
n = data.nunique()
labels = [f'bin{i}' for i in range(1, n + 1)]
data = data.cat.rename_categories(labels)
sizes = data.value_counts(normalize=True)
min_size = 0.05
while sizes.min() < min_size and no_of_bins > 1:
no_of_bins -= 1
data = pd.qcut(woe_col, q=no_of_bins, duplicates='drop')
if data.nunique() != data.cat.categories.nunique():
continue
n = data.nunique()
labels = [f'bin{i}' for i in range(1, n + 1)]
data = data.cat.rename_categories(labels)
sizes = data.value_counts(normalize=True)
return data
def naive_cat_bin(df, col, max_thre=10, min_thre=5, tolerence=2, flag='ignore'):
value_counts = df[col].value_counts()
total_values = len(df)
count_percentages = (value_counts / total_values) * 100
unique_values_df = pd.DataFrame({'Category': value_counts.index, 'Count Percentage': count_percentages})
count_per = list(unique_values_df['Count Percentage'])
final_ini = []
for i in count_per:
if i >= min_thre:
final_ini.append(i)
a = [x for x in count_per if x not in final_ini]
total_bins = int(100 / max_thre)
ava_bins = len(final_ini)
ava_bin_per = sum(final_ini)
bin_req = total_bins - ava_bins
bin_req_per = 100 - ava_bin_per
if flag == 'error' and bin_req > 0 and (bin_req_per / bin_req) > max_thre:
print(f"Binning for {col} is not possible with given parameters.")
return
step = False
while not step:
if bin_req > 0:
if (bin_req_per / bin_req) > min_thre:
step = True
else:
bin_req -= 1
else:
step = True
final_ini = [[x] for x in final_ini]
if bin_req > 0:
target_sum = bin_req_per / bin_req
else:
target_sum = bin_req_per
tolerence = 0
final = []
current_sum = 0.0
start_index = len(a) - 1
values = []
while start_index >= 0:
current_sum += a[start_index]
values.append(a[start_index])
if current_sum < target_sum - tolerence:
start_index -= 1
else:
final.append(values)
values = []
start_index -= 1
current_sum = 0.0
final.append(values)
final = final[::-1]
final = [sublist for sublist in final if sublist]
final_b = final_ini + final
final = [final_b[0]]
for subarr in final_b[1:]:
if sum(subarr) < (min_thre - tolerence):
final[-1].extend(subarr)
else:
final.append(subarr)
table = dict(zip(unique_values_df['Category'], unique_values_df['Count Percentage']))
new_final = [sublist.copy() for sublist in final]
table_reverse = defaultdict(list)
for k, v in table.items():
table_reverse[v].append(k)
output = []
for l in new_final:
temp = []
for item in l:
temp.append(table_reverse[item].pop())
output.append(temp)
new_final = output
k = len(new_final)
bin_labels = [f'bin{i}' for i in range(1, k + 1)]
bin_mapping = {value: bin_labels[i] for i, sublist in enumerate(new_final) for value in sublist}
bin_mapping[np.nan] = 'binNA'
return df[col].apply(lambda x: bin_mapping.get(x, x))
def col_bin_summary_categorical(df_cat, col, binned_df_1,dep_var=None):
unique_values_in_bins = df_cat.groupby(binned_df_1[col])[col].unique().apply(list)
unique_values_in_bins = unique_values_in_bins.rename_axis('bin').reset_index()
unique_bin_ranges = pd.Categorical(binned_df_1[col].unique())
uni = binned_df_1[col].nunique()
numeric_parts = [uni if val == 'binNA' else int(re.findall(r'\d+', val)[0]) for val in unique_bin_ranges]
unique_bin_ranges = unique_bin_ranges[np.argsort(numeric_parts)]
df_new_cat = pd.DataFrame({"column_name": [col] * len(unique_bin_ranges), "bin_ranges": unique_bin_ranges})
df_new_cat = df_new_cat.merge(unique_values_in_bins.rename(columns={'bin': 'bin_ranges', col: 'values in bin'}))
df_new_cat = df_new_cat.merge((binned_df_1[col].value_counts() / len(binned_df_1) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
if dep_var is not None:
df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].sum(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges')
df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].mean(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges')
df_new_cat['Index'] = (100 * df_new_cat['Mean_DV'] / binned_df_1[dep_var].mean()).round()
return df_new_cat
def create_categorical_binned_data(imputed_df,col, categorical_binning, dep_var, no_of_bins=None, max_thre=None, min_thre=None,tolerence=2, flag='ignore'):
imputed_df[dep_var] = imputed_df[dep_var].astype('int64')
df_cat = imputed_df.select_dtypes(include=['object'])
# remove columns with only one unique values
unique_counts = df_cat.nunique()
unique_cols = unique_counts[unique_counts == 1].index.tolist()
df_cat = df_cat.drop(unique_cols, axis=1)
if categorical_binning == 'woe_iv':
df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dep_var, no_of_bins))
binned_df_nominal.drop(dep_var, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x)
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1)
elif categorical_binning == 'naive':
df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore'))
binned_df_nominal.drop(dep_var, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all')
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1)
df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dep_var)
return df_summary
def create_categorical_binned_data1(imputed_df,col, nominal_binning, dependant_target_variable, no_of_bins=10, max_thre=10, min_thre=5, tolerence=2, flag='ignore', min_cluster_size=0.05, max_clusters=10):
imputed_df[dependant_target_variable] = imputed_df[dependant_target_variable].astype('int64')
df_cat = imputed_df.select_dtypes(include=['object'])
# remove columns with only one unique values
unique_counts = df_cat.nunique()
unique_cols = unique_counts[unique_counts == 1].index.tolist()
df_cat = df_cat.drop(unique_cols, axis=1)
if nominal_binning == 'woe':
df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dependant_target_variable, no_of_bins))
binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x)
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1)
elif nominal_binning == 'naive':
df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore'))
binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all')
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1)
df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dependant_target_variable)
binned_data = pd.DataFrame()
for bin_value in df_summary['values in bin']:
bin_column_name = f"{col}_{bin_value}"
binned_data[bin_column_name] = np.where(df_cat[col].isin(bin_value), 1, 0)
return binned_data
numerical_columns = st.session_state.imputed_df.select_dtypes(include=['number']).columns.tolist()
numerical_columns = [x for x in numerical_columns if x != st.session_state.flag]
categorical_columns = st.session_state.imputed_df.select_dtypes(include=['object', 'category']).columns.tolist()
categorical_columns = [x for x in categorical_columns if x != st.session_state.identifier]
st.session_state.numerical_columns=numerical_columns
st.session_state.categorical_columns=categorical_columns
st.title("Variable Profiling")
# Retrieve stored options from session_state or use default values
function_num = st.session_state.get("function_num", "value")
depth = st.session_state.get("depth", 3)
num_bins = st.session_state.get("num_bins", 10)
function_cat = st.session_state.get("function_cat", "woe_iv")
max_slider = st.session_state.get("max_slider", 10)
min_slider = st.session_state.get("min_slider", 5)
cat_bins_iv = st.session_state.get("cat_bins_iv", 10)
cat_bins_naive = st.session_state.get("cat_bins_naive", 10)
with st.expander("Profiling Inputs"):
st.write("Binning Inputs")
ui_columns = st.columns((1, 1))
with ui_columns[0]:
function_num = st.selectbox(
label="Select Numerical Binning Function",
options=['value', 'tree'],
#index=None
index=['value', 'tree'].index(st.session_state.function_num) if 'function_num' in st.session_state and st.session_state.function_num is not None else None
)
st.session_state.function_num = function_num # Store selected option
params_num = st.empty()
with params_num:
with ui_columns[-1]:
if function_num == 'tree':
depth = st.slider(
label="Depth",
min_value=1,
max_value=10,
value=depth,
key='depth_slider')
st.session_state.depth = depth # Store selected depth
elif function_num == 'value':
num_bins = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=num_bins,
key='num_bins_slider_num')
st.session_state.num_bins = num_bins # Store selected number of bins
left, right = st.columns(2)
with left:
function_cat = st.selectbox(
label="Select Categorical Binning Function",
options=['woe_iv', 'naive'],
#index=None
index=['woe_iv', 'naive'].index(st.session_state.function_cat) if 'function_cat' in st.session_state and st.session_state.function_cat is not None else None
)
st.session_state.function_cat = function_cat # Store selected option
params_cat = st.empty()
with params_cat:
if function_cat == 'woe_iv':
with right:
cat_bins_iv = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=cat_bins_iv,
key='num_bins_slider_cat_iv')
st.session_state.cat_bins_iv = cat_bins_iv # Store selected number of bins
with left:
min_slider = st.slider(
label="Min Threshold",
min_value=1,
max_value=100,
value=min_slider,
key='min_slider')
st.session_state.min_slider = min_slider # Store selected min threshold
with right:
max_slider = st.slider(
label="Max Threshold",
min_value=1,
max_value=100,
value=max_slider,
key='max_slider')
st.session_state.max_slider = max_slider # Store selected max threshold
elif function_cat == 'naive':
with right:
cat_bins_naive = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=cat_bins_naive,
key='num_bins_slider_cat_naive')
st.session_state.cat_bins_naive = cat_bins_naive # Store selected number of bins
with left:
st.write("#")
perform_profiling = st.button(
label="Perform profiling"
)
# if perform_profiling:
# binned_data_num = pd.DataFrame()
# for col in st.session_state.numerical_columns:
# if function_num == 'tree':
# depth = depth
# else:
# depth=None
# if function_num == 'value':
# num_bins=num_bins
# else:
# num_bins=None
# binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth)
# binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
# binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0)
# st.markdown("binned_data_num")
# st.dataframe(binned_data_num,use_container_width=True,hide_index=True)
if perform_profiling:
with st.expander("Profiling summary"):
st.write("Numerical binned data")
binned_data_num = pd.DataFrame()
for col in st.session_state.numerical_columns:
if function_num == 'tree':
depth = depth
else:
depth=None
if function_num == 'value':
num_bins=num_bins
else:
num_bins=None
binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth)
binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0)
st.dataframe(binned_data_num,use_container_width=True,hide_index=True)
st.write("Categorical binned data")
binned_data_cat = pd.DataFrame()
for col in st.session_state.categorical_columns:
if function_cat == 'woe_iv':
max_thre = max_slider
min_thre = min_slider
no_of_bins = cat_bins_iv
else:
max_thre = None
min_thre = None
no_of_bins = None
if function_cat == 'naive':
no_of_bins = cat_bins_naive
else:
no_of_bins=None
binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore')
binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str))
binned_data_col_cat.drop('column_name',axis=1,inplace=True)
binned_data_cat = pd.concat([binned_data_cat, binned_data_col_cat],axis=0)
st.dataframe(binned_data_cat,use_container_width=True,hide_index=True)
with st.expander("Profiling summary: Plots"):
st.markdown(
"<p class='plot-header'>Change the selected variable to plot"
" different charts</p>",
unsafe_allow_html=True,
)
left, right = st.columns(2)
with left:
if 'selected_variable' not in st.session_state:
st.session_state.selected_variable = [] # Initialize selected_variable
selected_variable = st.selectbox(
"Variable",
st.session_state.numerical_columns + st.session_state.categorical_columns,
# index=None
)
if isinstance(selected_variable, str):
selected_variable = [selected_variable] # Convert single selection to list
# Update session state with selected variable
st.session_state.selected_variable = selected_variable
# Iterate over selected variable(s)
if st.session_state.selected_variable:
for col in st.session_state.selected_variable:
if col in st.session_state.numerical_columns:
if function_num == 'tree':
depth = depth
else:
depth = None
if function_num == 'value':
num_bins = num_bins
else:
num_bins = None
binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth)
binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
fig = plot_chart(binned_data_col, col, dep_var=None)
st.plotly_chart(fig, use_container_width=True)
elif col in st.session_state.categorical_columns:
if function_cat == 'woe_iv':
max_thre = max_slider
min_thre = min_slider
no_of_bins = cat_bins_iv
else:
max_thre = None
min_thre = None
no_of_bins = None
if function_cat == 'naive':
no_of_bins = cat_bins_naive
else:
no_of_bins = None
binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore')
binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str))
binned_data_col_cat.drop('column_name', axis=1, inplace=True)
fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None)
st.plotly_chart(fig_cat, use_container_width=True)
st.divider()
# Combine numerical and categorical binned data into one dataframe
binned_data_combined = pd.DataFrame()
# Process numerical columns
for col in st.session_state.numerical_columns:
if function_num == 'tree':
depth = depth
else:
depth=None
if function_num == 'value':
num_bins=num_bins
else:
num_bins=None
# Your code to create numerical binned data
binned_data_num = create_numerical_binned_data1(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth)
binned_data_combined = pd.concat([binned_data_combined, binned_data_num], axis=1)
# Process categorical columns
for col in st.session_state.categorical_columns:
if function_cat == 'woe_iv':
max_thre = max_slider
min_thre = min_slider
no_of_bins = cat_bins_iv
else:
max_thre = None
min_thre = None
no_of_bins = None
if function_cat == 'naive':
no_of_bins = cat_bins_naive
else:
no_of_bins=None
# Your code to create categorical binned data
binned_data_cat = create_categorical_binned_data1(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore')
binned_data_combined = pd.concat([binned_data_combined, binned_data_cat], axis=1)
def clean_column_name(column_name):
# Replace special characters with underscores except for the decimal point
return re.sub(r'\.(\d+)', '', column_name)
binned_data_combined.columns = binned_data_combined.columns.map(clean_column_name)
valid_feature_names = [name.replace('[', '').replace(']', '').replace('<', '').replace(',', '_').replace('(', '').replace("'", '') for name in binned_data_combined.columns]
valid_feature_names = [name.replace(' ', '').replace(' ', '') for name in valid_feature_names]
binned_data_combined.columns = valid_feature_names
# Display the combined binned data dataframe
st.session_state.binned_df = binned_data_combined
st.session_state.binned_df[st.session_state.flag]=st.session_state.imputed_df[st.session_state.flag]
st.session_state.binned_df.insert(0, st.session_state.identifier, st.session_state.imputed_df[st.session_state.identifier])
print(st.session_state.binned_df['individual_id_ov'])
#st.session_state.binned_df[st.session_state.identifier]=st.session_state.imputed_df[st.session_state.identifier]
st.markdown("Binned DataFrame")
st.dataframe(binned_data_combined.head(10), use_container_width=True, hide_index=True)
# Add a button to download the binned dataframe
if st.session_state.binned_df is not None:
#with st.expander("Download Binned Data"):
download_button = st.download_button(
label="Download Binned Data as CSV",
data=st.session_state.binned_df.to_csv(index=False).encode(),
file_name='binned_data.csv',
mime='text/csv',
)
# Create a button to download the DataFrame as CSV
#if st.button("Download Binned Data"):
# binned_csv = binned_df.to_csv(index=False)
# b64 = base64.b64encode(binned_csv.encode()).decode()
# href = f'<a href="data:file/csv;base64,{b64}" download="binned_data.csv">Download Binned Data CSV File</a>'
# st.markdown(href, unsafe_allow_html=True)
# def download_button(data, file_name, button_text):
# csv = data.to_csv(index=False).encode()
# href = f'<a href="data:file/csv;base64,{csv.decode()}" download="{file_name}">{button_text}</a>'
# st.markdown(href, unsafe_allow_html=True)
# # Add the download button
# download_button(binned_data_combined, 'data.csv', 'Download CSV')
# with st.expander("Profiling summary: Plots"):
# st.markdown(
# "<p class='plot-header'>Change the selected variable to plot"
# " different charts</p>",
# unsafe_allow_html=True,
# )
# st.write("Numerical binned data plots")
# for col in st.session_state.numerical_columns:
# if function_num == 'tree':
# depth = depth
# else:
# depth=None
# if function_num == 'value':
# num_bins=num_bins
# else:
# num_bins=None
# binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth)
# binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
# fig=plot_chart(binned_data_col, col, dep_var=None)
# st.plotly_chart(fig, use_container_width=False)
# st.write("Categorical binned data plots")
# for col in st.session_state.categorical_columns:
# if function_cat == 'woe_iv':
# max_thre = max_slider
# min_thre = min_slider
# no_of_bins = cat_bins_iv
# else:
# max_thre = None
# min_thre = None
# no_of_bins = None
# if function_cat == 'naive':
# no_of_bins = cat_bins_naive
# else:
# no_of_bins=None
# binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore')
# binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str))
# binned_data_col_cat.drop('column_name',axis=1,inplace=True)
# fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None)
# st.plotly_chart(fig_cat, use_container_width=False)
|