SCM / pages /4_Matching & Diagnostics.py
Manoj
firt
6a04ca4
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
import base64
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import NearestNeighbors
from math import sqrt
from statistics import mean, variance
import seaborn as sns
import plotly.graph_objects as go
def cohend_plot_function(std_mean_diff_df2, std_mean_diff_df, selected_attributes):
# Create subplot of selected attributes
fig = go.Figure()
x = std_mean_diff_df2[std_mean_diff_df2["Metrics"].isin(selected_attributes)]["Cohend Value"][::-1]
y = list(std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Metrics"][::-1])
x1 = std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Cohend Value"][::-1]
y1 = list(std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Metrics"][::-1])
# Add traces
fig.add_trace(go.Scatter(
x=x,
y=y,
mode='markers',
marker=dict(color='blue'),
name='general_control_cohend'
))
fig.add_trace(go.Scatter(
x=x1,
y=y1,
mode='markers',
marker=dict(color='orange', symbol='diamond-open'),
name='synthetic_control_cohend'
))
# Add vertical lines
for val in [-0.1, 0.1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75]:
fig.add_shape(
type="line",
x0=val,
y0=0,
x1=val,
y1=10,
line=dict(
color="gray",
width=1,
dash="dash",
)
)
# Add vertical line at x=0
fig.add_shape(
type="line",
x0=0,
y0=0,
x1=0,
y1=10,
line=dict(
color="black",
width=1,
)
)
# Update layout
fig.update_layout(
xaxis=dict(
title='cohend',
range=[-1, 1]
),
yaxis=dict(
title='Metrics',
autorange="reversed"
),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
# Show
st.plotly_chart(fig,use_container_width=True)
def plot_comparison(comparison_df):
fig = go.Figure()
# Add bars for treatment and control values
fig.add_trace(go.Bar(
x=comparison_df.index,
y=comparison_df[comparison_df.columns[0]],
name='Treatment',
marker=dict(color='#053057'),
))
fig.add_trace(go.Bar(
x=comparison_df.index,
y=comparison_df[comparison_df.columns[1]],
name='Control',
marker=dict(color='#8ac4f8'),
))
# Update layout
fig.update_layout(
xaxis=dict(
title='quartiles'
),
yaxis=dict(
title='values'
),
barmode='group',
title=comparison_df.columns[0].split('treatment')[1][1:]
)
# Show
st.plotly_chart(fig,use_container_width=True)
def plot_propensity_distribution(treatment_data, control_data):
fig = go.Figure()
# Add histograms for treatment and control data
fig.add_trace(go.Histogram(
x=treatment_data,
name='Treatment',
marker=dict(color='#053057'),
opacity=0.6
))
fig.add_trace(go.Histogram(
x=control_data,
name='Control',
marker=dict(color='#8ac4f8'),
opacity=0.6
))
# Update layout
fig.update_layout(
xaxis=dict(
title='propensity_score'
),
yaxis=dict(
title='count'
),
barmode='overlay',
title='Propensity Distribution'
)
# Show
st.plotly_chart(fig,use_container_width=True)
def comparison(df, variable):
# generates a comparison df for any given feature
treatment_values = df[df.Y==1].groupby('quartiles')[variable].mean()
control_values = df[df.Y==0].groupby('quartiles')[variable].mean()
comparison = pd.merge(treatment_values, control_values, left_index=True, right_index=True)
comparison.rename({f'{variable}_x': f'treatment_{variable}', f'{variable}_y': f'control_{variable}'}, axis=1, inplace=True)
comparison['difference'] = np.abs(comparison[f'treatment_{variable}'] - comparison[f'control_{variable}'])
comparison['percent_difference'] = np.abs((comparison[f'treatment_{variable}'] - comparison[f'control_{variable}']) / comparison[f'treatment_{variable}'])
return comparison
# Function to calculate Cohen's d for independent samples
def cohend(d1, d2):
n1, n2 = len(d1), len(d2)
s1, s2 = np.var(d1, ddof=1), np.var(d2, ddof=1)
s = sqrt(((n1-1) * s1 + (n2-1) * s2) / (n1 + n2 - 2))
u1, u2 = mean(d1), mean(d2)
# Check if the standard deviation is zero
if s == 0:
return 0 # Return 0 when the denominator is zero
else:
return (u1 - u2) / s
# Function to calculate standardized mean differences
def std_mean_diff(group_A_df, group_B_df):
cohend_values_arr = [0] * len(group_A_df.columns)
for i in range(len(group_A_df.columns)):
cohend_values_arr[i] = cohend(group_A_df[group_A_df.columns[i]], group_B_df[group_A_df.columns[i]])
cohend_array_pre_transp = [group_A_df.columns, cohend_values_arr]
np_array = np.array(cohend_array_pre_transp)
cohend_array = np.transpose(np_array)
return cohend_array
# Function to get matched IDs and calculate Cohen's d values
def cohend_code_function(binned_df, matching_df):
treat_df_complete = binned_df[binned_df['Y'] == 1]
control_df_complete = binned_df[binned_df['Y'] == 0]
treat_df_complete.drop('Y', axis =1, inplace = True)
control_df_complete.drop('Y', axis =1, inplace = True)
treatment_cust = pd.DataFrame()
control_cust = pd.DataFrame()
treatment_cust['individual_id_ov'] = matching_df["Id"]
control_cust['individual_id_ov'] = matching_df["matched_Id"]
#getting cohend values for synthetic control population
group_A_df = treatment_cust[['individual_id_ov']]
group_A_df = group_A_df.merge(treat_df_complete,
how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
group_B_df = control_cust[['individual_id_ov']]
group_B_df = group_B_df.merge(control_df_complete,
how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
group_A_df.drop('individual_id_ov', axis =1, inplace = True)
group_B_df.drop('individual_id_ov', axis =1, inplace = True)
cohensd_df = std_mean_diff(group_A_df, group_B_df)
std_mean_diff_df = pd.DataFrame(columns=["Metrics","Cohend Value"])
for i in range(len(cohensd_df)):
std_mean_diff_df.loc[len(std_mean_diff_df.index)] = [cohensd_df[i][0],round(float(cohensd_df[i][1]),2)]
std_mean_diff_df["flag"] = std_mean_diff_df.apply(lambda x : 1 if (x["Cohend Value"]>0.1 or x["Cohend Value"]<-0.1) else 0, axis =1)
st.write('Number of variables with standard mean difference between treatment and control is out of desired range (-0.1, 0.1): ', std_mean_diff_df["flag"].sum())
# Download cohend output table
st.write(std_mean_diff_df)
#getting cohend values for General population
group_A_df = treatment_cust[['individual_id_ov']]
group_A_df = group_A_df.merge(treat_df_complete,
how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
group_B_df = control_df_complete[['individual_id_ov']]
group_B_df = group_B_df.merge(control_df_complete,
how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
group_A_df.drop('individual_id_ov', axis =1, inplace = True)
group_B_df.drop('individual_id_ov', axis =1, inplace = True)
cohensd_df = std_mean_diff(group_A_df, group_B_df)
std_mean_diff_df2 = pd.DataFrame(columns=["Metrics","Cohend Value"])
for i in range(len(cohensd_df)):
std_mean_diff_df2.loc[len(std_mean_diff_df2.index)] = [cohensd_df[i][0],round(float(cohensd_df[i][1]),2)]
return std_mean_diff_df2, std_mean_diff_df
def calculate_iv(df, flag, identifier):
df1 = df.drop([flag, identifier, 'propensity_score'], axis=1)
iv_df = pd.DataFrame(columns=['Feature', 'IV'])
for column in df1.columns:
data = pd.concat([pd.qcut(df1[column], q=10, duplicates='drop'), df[flag]], axis=1)
groups = data.groupby(by=column)[df[flag].name].agg(['count', 'sum'])
groups['event_rate'] = groups['sum'] / groups['count']
groups['non_event_rate'] = (groups['count'] - groups['sum']) / groups['count']
groups['WOE'] = np.log(groups['event_rate'] / groups['non_event_rate'])
groups['IV'] = (groups['event_rate'] - groups['non_event_rate']) * groups['WOE']
iv = groups['IV'].sum()
iv_df = pd.concat([iv_df, pd.DataFrame({'Feature': [column], 'IV': [iv]})],axis=0, ignore_index=True)
return iv_df
def xgboost_feature_importance(df, flag,identifier):
X, y = df.drop([flag,identifier,'propensity_score'],axis=1), df[[flag]]
model = xgb.XGBClassifier()
model.fit(X, y)
importances = model.feature_importances_
importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
importance_df = importance_df.sort_values(by='Importance', ascending=False)
return importance_df
# iv_result = calculate_iv(df_features, df_target)
# importance_result = xgboost_feature_importance(df_features, df_target)
def get_matching_pairs(identifier,treated_df, non_treated_df, sample_size_A, sample_size_B,matching_columns,flag):
# if treated_df[identifier].isna().any() or non_treated_df[identifier].isna().any():
# st.error("The identifier should not contain Nan's")
treated_df = treated_df[matching_columns].sample(frac=sample_size_A/100)
non_treated_df = non_treated_df[matching_columns].sample(frac=sample_size_B/100)
treated_df = treated_df.set_index(st.session_state.identifier)
treated_df.drop(flag,axis=1,inplace=True)
non_treated_df = non_treated_df.set_index(st.session_state.identifier)
non_treated_df.drop(flag,axis=1,inplace=True)
treated_x = treated_df.values
non_treated_x = non_treated_df.values
scaler = StandardScaler()
scaler.fit(treated_x)
treated_x = scaler.transform(treated_x)
non_treated_x = scaler.transform(non_treated_x)
print("data transformaion completed")
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(non_treated_x)
print("model fitting completed")
distances, indices = nbrs.kneighbors(treated_x)
print("matching completed")
indices = indices.reshape([1,indices.shape[0]*indices.shape[1]])
res = []
for i in list(treated_df.index):
for ele in range(1):
res.append(i)
output_df = pd.DataFrame()
output_df["Id"] = res
output_df["matched_Id"] = non_treated_df.iloc[indices[0]].index
return output_df
# Streamlit App
st.title("Matching")
# Calculate IV
iv_df = calculate_iv(st.session_state.binned_df, st.session_state.flag, st.session_state.identifier)
# Calculate XGBoost feature importance
importance_df = xgboost_feature_importance(st.session_state.binned_df, st.session_state.flag, st.session_state.identifier)
# Combine IV and feature importance into a final DataFrame
combined_df = pd.merge(iv_df, importance_df, on='Feature', suffixes=('_iv', '_importance'))
combined_df['Avg_IV_Importance'] = (combined_df['IV'] + combined_df['Importance']) / 2
combined_df.sort_values('Avg_IV_Importance',inplace=True,ascending=False)
# Add the 'Select' column with checkboxes
combined_df.insert(0, 'Select', False)
combined_df.reset_index(drop=True,inplace=True)
# Display the feature importances
st.subheader("Feature importances")
st.session_state["edited_df_combined"] = st.data_editor(
combined_df.style.hide(axis="index"),
column_config={
"Select": st.column_config.CheckboxColumn(required=True)
},
disabled=combined_df.drop("Select", axis=1).columns,use_container_width=True
)
# Allow users to enter the number of top features they want to select
top_features_input = st.number_input("Enter the number of top features", min_value=1, max_value=len(combined_df), value=None)
if top_features_input is not None:
# Select the top features based on user input
selected_df = combined_df.head(top_features_input)
selected_features = selected_df['Feature'].tolist()
else:
# Check if any features are selected via checkboxes
selected_features = st.session_state.edited_df_combined[st.session_state.edited_df_combined['Select']]['Feature'].tolist()
# Determine the selected features based on user input
#selected_features = checkbox_selected_features if checkbox_selected_features else selected_features
selected_features.append(st.session_state.identifier)
selected_features.append(st.session_state.flag)
# Update the session state with the selected features
st.session_state.selected_features = selected_features
with st.expander("Matching Inputs",expanded=True):
st.write("Matching Inputs")
ui_columns = st.columns((1, 1))
with ui_columns[0]:
sample_size_A = st.slider("Sample Size for treatment Group", 1, 100, 100)
with ui_columns[1]:
sample_size_B = st.slider("Sample Size for Control Group", 1, 100, 100)
with ui_columns[0]:
st.write("#")
run_matching = st.button(
label="Run Matching"
)
st.divider()
if run_matching:
matching_df = get_matching_pairs(st.session_state.identifier,st.session_state.treated_df, st.session_state.non_treated_df, sample_size_A, sample_size_B,st.session_state.selected_features,st.session_state.flag)
st.session_state.matching_df = matching_df
# Display the result
st.dataframe(st.session_state.matching_df)
if st.session_state.matching_df is not None:
#with st.expander("Download Matching DF"):
download_button = st.download_button(
label="Download Matched Data as CSV",
data=st.session_state.matching_df.to_csv(index=False).encode(),
file_name='matching_data.csv',
mime='text/csv',
)
# if 'matching_df' not in st.session_state:
# st.session_state.matching_df = False
st.subheader("Matching diagnostics")
control_group = st.session_state.binned_df[st.session_state.binned_df[st.session_state.identifier].isin(st.session_state.matching_df['matched_Id'])]
treatment_group = st.session_state.binned_df[st.session_state.binned_df.Y==1]
#create combined group and add ventiles
combined_group = pd.concat([control_group, treatment_group])
combined_group['quartiles'] = pd.qcut(combined_group['propensity_score'], 4, labels=False)
combined_group.drop(st.session_state.identifier,axis=1,inplace=True)
st.session_state.combined_group=combined_group
if 'perform_diagnostics' not in st.session_state:
st.session_state.perform_diagnostics = False
# Display button
perform_diagnostics = st.button(label="Run Diagnostics")
if perform_diagnostics or st.session_state.perform_diagnostics:
st.session_state.perform_diagnostics = True
with st.expander("Matching Diagnostics", expanded=True):
left, right = st.columns(2)
std_mean_diff_df2,std_mean_diff_df = cohend_code_function(st.session_state.binned_df, st.session_state.matching_df)
st.subheader("Cohen's d Plot")
cohend_plot_function(std_mean_diff_df2,std_mean_diff_df, selected_features)
# Pre-matching Propensity Distribution
st.subheader("Pre-matching Propensity Distributions")
plot_propensity_distribution(st.session_state.binned_df[st.session_state.binned_df.Y == 1]['propensity_score'], st.session_state.binned_df[st.session_state.binned_df.Y == 0]['propensity_score'])
# Post-matching Propensity Distribution
st.subheader("Post-matching Propensity Distributions")
temp = pd.merge(left=st.session_state.matching_df, right=st.session_state.binned_df[[st.session_state.identifier, 'propensity_score']], left_on='Id', right_on=st.session_state.identifier, how='left')
temp.drop(st.session_state.identifier, axis=1, inplace=True)
temp.rename({'Id': 'treatment_id', 'matched_Id': 'control_id', 'propensity_score': 'treatment_propensity'}, axis=1, inplace=True)
temp = pd.merge(left=temp, right=st.session_state.binned_df[[st.session_state.identifier, 'propensity_score']], left_on='control_id', right_on=st.session_state.identifier, how='left')
temp.drop(st.session_state.identifier, axis=1, inplace=True)
temp.rename({'propensity_score': 'control_propensity'}, axis=1, inplace=True)
plot_propensity_distribution(temp['treatment_propensity'],temp['control_propensity'])
with st.expander("Comparison Plots",expanded=True):
st.markdown(
"<p class='plot-header'>Change the selected variable to plot"
" different charts</p>",
unsafe_allow_html=True,
)
left, right = st.columns(2)
with left:
if 'selected_variable_comp' not in st.session_state:
st.session_state.selected_variable_comp = [] # Initialize selected_variable
selected_variable_comp = st.multiselect(
"Variable",
st.session_state.combined_group.columns,
st.session_state.selected_variable_comp # Set the default value to the stored session state
)
# Update session state with selected variable
st.session_state.selected_variable_comp = selected_variable_comp
if st.session_state.selected_variable_comp:
# Plot comparisons for selected variables
comparisons = {}
for var in st.session_state.selected_variable_comp:
comparisons[var] = comparison(combined_group, var)
plot_comparison(comparisons[var])
# selected_variables = st.multiselect("Select variables for comparison", combined_group.columns)
# if selected_variables:
# # Plot comparisons for selected variables
# comparisons = {}
# for var in selected_variables:
# comparisons[var] = comparison(combined_group, var)
# plot_comparison(comparisons[var])