import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt from tqdm import tqdm from matplotlib.ticker import MaxNLocator import streamlit as st import ast from collections import defaultdict from scipy.cluster.hierarchy import linkage, fcluster, dendrogram from sklearn.cluster import KMeans, AgglomerativeClustering from sklearn.preprocessing import LabelEncoder #from kmodes.kmodes import KModes import matplotlib.pyplot as plt import seaborn as sns #from kmodes.kprototypes import KPrototypes import warnings import pandas as pd import numpy as np from scipy import stats import scipy.cluster.hierarchy as sch from scipy.spatial.distance import pdist import os import re import time from plotly.subplots import make_subplots import plotly.graph_objects as go import numpy as np import plotly.express as px import base64 def tree_based_bin_data(df, column_name, dep_var, depth_of_tree): df2 = df.copy() df2 = df2.loc[df2[column_name].notnull()] x = df2[column_name].values.reshape(-1, 1) y = df2[dep_var].values params = {'max_depth': range(2, depth_of_tree + 1), 'min_samples_split': [2, 3, 5, 10], 'min_samples_leaf': [int(np.ceil(0.05 * len(x)))]} clf = DecisionTreeClassifier() g_search = GridSearchCV(clf, param_grid=params, scoring='accuracy') g_search.fit(x, y) best_clf = g_search.best_estimator_ bin_edges = best_clf.tree_.threshold bin_edges = sorted(set(bin_edges[bin_edges != -2])) tree_based_binned_data = value_bin_data(df, column_name, bin_edges) return tree_based_binned_data def decile_bin_data(df, col, no_of_bins): decile_binned_data = pd.qcut(df[col], no_of_bins, duplicates='drop') return decile_binned_data def value_bin_data(df, col, no_of_bins): value_binned_data = pd.cut(df[col], no_of_bins, duplicates='drop') return value_binned_data def col_bin_summary_numerical(bin_df, col, dep_var=None): unique_bin_edges = bin_df[col].unique() df_new = pd.DataFrame({"bin_ranges": unique_bin_edges}) try: df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={'index': 'bin_ranges', col: 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2) except: df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2) if dep_var is not None: df_new = df_new.merge(bin_df.groupby(col)[dep_var].sum().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges', how='left') df_new = df_new.merge(bin_df.groupby(col)[dep_var].mean().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges', how='left') df_new['Index'] = (100 * df_new['Mean_DV'] / bin_df['Y'].mean()).round() df_new = df_new[['bin_ranges', 'count%', 'Event', 'Mean_DV', 'Index']] df_new = df_new.sort_values(by='bin_ranges') return df_new def plot_chart(df, col, dep_var): #fig = go.Figure() df['bin_ranges_str'] = df['bin_ranges'].astype(str) fig = make_subplots(specs=[[{"secondary_y": True}]]) # Bar trace for Count% fig.add_trace( go.Bar( x=df['bin_ranges_str'], y=df['count%'], name='Count%', marker_color='#053057', hovertemplate=( f"Bin: %{{x}}
" f"Count%: %{{y}}" ), ) ) # Add the line trace for Index on the secondary y-axis fig.add_trace( go.Scatter( x=df['bin_ranges_str'], y=df['Index'], mode='lines+markers', name='Index', marker=dict(color="#8ac4f8"), hovertemplate=( f"Bin: %{{x}}
" f"Index%: %{{y}}" ), ), secondary_y=True ) # Update layout fig.update_layout( title=f'Distribution of {col}', xaxis=dict(title='Bin_ranges'), yaxis=dict(title='Count%', color='#053057'), yaxis2=dict(title='Index', color="#8ac4f8", overlaying='y', side='right'), legend=dict(x=1.02, y=0.98), hovermode='x' ) fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=False) return fig # def plot_chart(df, col, dep_var=None): # fig, ax1 = plt.subplots(figsize=(10, 6)) # # Convert Interval type to string # df['bin_ranges_str'] = df['bin_ranges'].astype(str) # ax1.bar(df['bin_ranges_str'], df['count%'], color='b', alpha=0.7, label='Count%') # ax1.set_xlabel('Bin Ranges') # ax1.set_ylabel('Count%', color='b') # if dep_var is not None: # ax2 = ax1.twinx() # ax2.plot(df['bin_ranges_str'], df['Index'], color='r', marker='o', label='Index') # ax2.set_ylabel('Index', color='r') # ax1.set_title(f'Distribution of {col}') # ax1.legend(loc='upper left') # return st.plotly_chart(fig) def create_numerical_binned_data(df, col, func,no_of_bins=None,dep_var=None, depth=None): df_org = df.copy() if dep_var is not None: df_org[dep_var] = df_org[dep_var].astype('int64') df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1) if func == 'tree': bin_df = tree_based_bin_data(df, col, dep_var, depth) elif func == 'decile': bin_df = decile_bin_data(df_num, col, 10) else: bin_df = value_bin_data(df_num, col, no_of_bins) bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1) else: df_num = df_org.select_dtypes(include=[np.number]) if func == 'decile': bin_df = decile_bin_data(df_num, col, no_of_bins) else: bin_df = value_bin_data(df_num, col, no_of_bins) df_summary = col_bin_summary_numerical(bin_df,col, dep_var) return df_summary def create_numerical_binned_data1(df, col, func,no_of_bins,dep_var,depth=None): df_org = df.copy() df_org[dep_var] = df_org[dep_var].astype('int64') df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1) if func == 'tree': bin_df = tree_based_bin_data(df, col, dep_var, depth) elif func == 'decile': bin_df = decile_bin_data(df_num, col, no_of_bins) else: bin_df = value_bin_data(df_num, col, no_of_bins) bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1) binned_data=pd.DataFrame() binned_data[col]=df_org[col] unique_bins = bin_df[col].unique() for bin_value in unique_bins: bin_column_name = f"{col}_{bin_value}" binned_data[bin_column_name] = np.where(binned_data[col] == bin_value, df_org[col], 0) return binned_data #Categorical cols binning def woe_iv(df, column_name, dep_var, no_of_bins): y0 = df[dep_var].value_counts()[0] y1 = df[dep_var].value_counts()[1] if df[column_name].nunique() < 10: data = pd.Series(pd.factorize(df[column_name])[0] + 1, index=df.index).rename('{}'.format(column_name)).apply(lambda x: f'bin{x}') else: df_woe_iv = (pd.crosstab(df[column_name], df[dep_var], normalize='columns').assign(woe=lambda dfx: np.log((dfx[1] + (0.5 / y1)) / (dfx[0] + (0.5 / y0)))).assign(iv=lambda dfx: (dfx['woe'] * (dfx[1] - dfx[0])))) woe_map = df_woe_iv['woe'].to_dict() woe_col = df[column_name].map(woe_map) data = pd.qcut(woe_col, no_of_bins, duplicates='drop') n = data.nunique() labels = [f'bin{i}' for i in range(1, n + 1)] data = data.cat.rename_categories(labels) sizes = data.value_counts(normalize=True) min_size = 0.05 while sizes.min() < min_size and no_of_bins > 1: no_of_bins -= 1 data = pd.qcut(woe_col, q=no_of_bins, duplicates='drop') if data.nunique() != data.cat.categories.nunique(): continue n = data.nunique() labels = [f'bin{i}' for i in range(1, n + 1)] data = data.cat.rename_categories(labels) sizes = data.value_counts(normalize=True) return data def naive_cat_bin(df, col, max_thre=10, min_thre=5, tolerence=2, flag='ignore'): value_counts = df[col].value_counts() total_values = len(df) count_percentages = (value_counts / total_values) * 100 unique_values_df = pd.DataFrame({'Category': value_counts.index, 'Count Percentage': count_percentages}) count_per = list(unique_values_df['Count Percentage']) final_ini = [] for i in count_per: if i >= min_thre: final_ini.append(i) a = [x for x in count_per if x not in final_ini] total_bins = int(100 / max_thre) ava_bins = len(final_ini) ava_bin_per = sum(final_ini) bin_req = total_bins - ava_bins bin_req_per = 100 - ava_bin_per if flag == 'error' and bin_req > 0 and (bin_req_per / bin_req) > max_thre: print(f"Binning for {col} is not possible with given parameters.") return step = False while not step: if bin_req > 0: if (bin_req_per / bin_req) > min_thre: step = True else: bin_req -= 1 else: step = True final_ini = [[x] for x in final_ini] if bin_req > 0: target_sum = bin_req_per / bin_req else: target_sum = bin_req_per tolerence = 0 final = [] current_sum = 0.0 start_index = len(a) - 1 values = [] while start_index >= 0: current_sum += a[start_index] values.append(a[start_index]) if current_sum < target_sum - tolerence: start_index -= 1 else: final.append(values) values = [] start_index -= 1 current_sum = 0.0 final.append(values) final = final[::-1] final = [sublist for sublist in final if sublist] final_b = final_ini + final final = [final_b[0]] for subarr in final_b[1:]: if sum(subarr) < (min_thre - tolerence): final[-1].extend(subarr) else: final.append(subarr) table = dict(zip(unique_values_df['Category'], unique_values_df['Count Percentage'])) new_final = [sublist.copy() for sublist in final] table_reverse = defaultdict(list) for k, v in table.items(): table_reverse[v].append(k) output = [] for l in new_final: temp = [] for item in l: temp.append(table_reverse[item].pop()) output.append(temp) new_final = output k = len(new_final) bin_labels = [f'bin{i}' for i in range(1, k + 1)] bin_mapping = {value: bin_labels[i] for i, sublist in enumerate(new_final) for value in sublist} bin_mapping[np.nan] = 'binNA' return df[col].apply(lambda x: bin_mapping.get(x, x)) def col_bin_summary_categorical(df_cat, col, binned_df_1,dep_var=None): unique_values_in_bins = df_cat.groupby(binned_df_1[col])[col].unique().apply(list) unique_values_in_bins = unique_values_in_bins.rename_axis('bin').reset_index() unique_bin_ranges = pd.Categorical(binned_df_1[col].unique()) uni = binned_df_1[col].nunique() numeric_parts = [uni if val == 'binNA' else int(re.findall(r'\d+', val)[0]) for val in unique_bin_ranges] unique_bin_ranges = unique_bin_ranges[np.argsort(numeric_parts)] df_new_cat = pd.DataFrame({"column_name": [col] * len(unique_bin_ranges), "bin_ranges": unique_bin_ranges}) df_new_cat = df_new_cat.merge(unique_values_in_bins.rename(columns={'bin': 'bin_ranges', col: 'values in bin'})) df_new_cat = df_new_cat.merge((binned_df_1[col].value_counts() / len(binned_df_1) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2) if dep_var is not None: df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].sum(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges') df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].mean(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges') df_new_cat['Index'] = (100 * df_new_cat['Mean_DV'] / binned_df_1[dep_var].mean()).round() return df_new_cat def create_categorical_binned_data(imputed_df,col, categorical_binning, dep_var, no_of_bins=None, max_thre=None, min_thre=None,tolerence=2, flag='ignore'): imputed_df[dep_var] = imputed_df[dep_var].astype('int64') df_cat = imputed_df.select_dtypes(include=['object']) # remove columns with only one unique values unique_counts = df_cat.nunique() unique_cols = unique_counts[unique_counts == 1].index.tolist() df_cat = df_cat.drop(unique_cols, axis=1) if categorical_binning == 'woe_iv': df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1) tqdm.pandas(dynamic_ncols=True, position=0) binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dep_var, no_of_bins)) binned_df_nominal.drop(dep_var, axis=1, inplace=True) binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x) binned_df_nominal = binned_df_nominal.astype('category') cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1] binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True) binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1) elif categorical_binning == 'naive': df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1) tqdm.pandas(dynamic_ncols=True, position=0) binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore')) binned_df_nominal.drop(dep_var, axis=1, inplace=True) binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all') binned_df_nominal = binned_df_nominal.astype('category') cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1] binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True) binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1) df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dep_var) return df_summary def create_categorical_binned_data1(imputed_df,col, nominal_binning, dependant_target_variable, no_of_bins=10, max_thre=10, min_thre=5, tolerence=2, flag='ignore', min_cluster_size=0.05, max_clusters=10): imputed_df[dependant_target_variable] = imputed_df[dependant_target_variable].astype('int64') df_cat = imputed_df.select_dtypes(include=['object']) # remove columns with only one unique values unique_counts = df_cat.nunique() unique_cols = unique_counts[unique_counts == 1].index.tolist() df_cat = df_cat.drop(unique_cols, axis=1) if nominal_binning == 'woe': df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1) tqdm.pandas(dynamic_ncols=True, position=0) binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dependant_target_variable, no_of_bins)) binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True) binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x) binned_df_nominal = binned_df_nominal.astype('category') cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1] binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True) binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1) elif nominal_binning == 'naive': df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1) tqdm.pandas(dynamic_ncols=True, position=0) binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore')) binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True) binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all') binned_df_nominal = binned_df_nominal.astype('category') cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1] binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True) binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1) df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dependant_target_variable) binned_data = pd.DataFrame() for bin_value in df_summary['values in bin']: bin_column_name = f"{col}_{bin_value}" binned_data[bin_column_name] = np.where(df_cat[col].isin(bin_value), 1, 0) return binned_data numerical_columns = st.session_state.imputed_df.select_dtypes(include=['number']).columns.tolist() numerical_columns = [x for x in numerical_columns if x != st.session_state.flag] categorical_columns = st.session_state.imputed_df.select_dtypes(include=['object', 'category']).columns.tolist() categorical_columns = [x for x in categorical_columns if x != st.session_state.identifier] st.session_state.numerical_columns=numerical_columns st.session_state.categorical_columns=categorical_columns st.title("Variable Profiling") # Retrieve stored options from session_state or use default values function_num = st.session_state.get("function_num", "value") depth = st.session_state.get("depth", 3) num_bins = st.session_state.get("num_bins", 10) function_cat = st.session_state.get("function_cat", "woe_iv") max_slider = st.session_state.get("max_slider", 10) min_slider = st.session_state.get("min_slider", 5) cat_bins_iv = st.session_state.get("cat_bins_iv", 10) cat_bins_naive = st.session_state.get("cat_bins_naive", 10) with st.expander("Profiling Inputs"): st.write("Binning Inputs") ui_columns = st.columns((1, 1)) with ui_columns[0]: function_num = st.selectbox( label="Select Numerical Binning Function", options=['value', 'tree'], #index=None index=['value', 'tree'].index(st.session_state.function_num) if 'function_num' in st.session_state and st.session_state.function_num is not None else None ) st.session_state.function_num = function_num # Store selected option params_num = st.empty() with params_num: with ui_columns[-1]: if function_num == 'tree': depth = st.slider( label="Depth", min_value=1, max_value=10, value=depth, key='depth_slider') st.session_state.depth = depth # Store selected depth elif function_num == 'value': num_bins = st.slider( label="Number of Bins", min_value=2, max_value=20, value=num_bins, key='num_bins_slider_num') st.session_state.num_bins = num_bins # Store selected number of bins left, right = st.columns(2) with left: function_cat = st.selectbox( label="Select Categorical Binning Function", options=['woe_iv', 'naive'], #index=None index=['woe_iv', 'naive'].index(st.session_state.function_cat) if 'function_cat' in st.session_state and st.session_state.function_cat is not None else None ) st.session_state.function_cat = function_cat # Store selected option params_cat = st.empty() with params_cat: if function_cat == 'woe_iv': with right: cat_bins_iv = st.slider( label="Number of Bins", min_value=2, max_value=20, value=cat_bins_iv, key='num_bins_slider_cat_iv') st.session_state.cat_bins_iv = cat_bins_iv # Store selected number of bins with left: min_slider = st.slider( label="Min Threshold", min_value=1, max_value=100, value=min_slider, key='min_slider') st.session_state.min_slider = min_slider # Store selected min threshold with right: max_slider = st.slider( label="Max Threshold", min_value=1, max_value=100, value=max_slider, key='max_slider') st.session_state.max_slider = max_slider # Store selected max threshold elif function_cat == 'naive': with right: cat_bins_naive = st.slider( label="Number of Bins", min_value=2, max_value=20, value=cat_bins_naive, key='num_bins_slider_cat_naive') st.session_state.cat_bins_naive = cat_bins_naive # Store selected number of bins with left: st.write("#") perform_profiling = st.button( label="Perform profiling" ) # if perform_profiling: # binned_data_num = pd.DataFrame() # for col in st.session_state.numerical_columns: # if function_num == 'tree': # depth = depth # else: # depth=None # if function_num == 'value': # num_bins=num_bins # else: # num_bins=None # binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth) # binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) # binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0) # st.markdown("binned_data_num") # st.dataframe(binned_data_num,use_container_width=True,hide_index=True) if perform_profiling: with st.expander("Profiling summary"): st.write("Numerical binned data") binned_data_num = pd.DataFrame() for col in st.session_state.numerical_columns: if function_num == 'tree': depth = depth else: depth=None if function_num == 'value': num_bins=num_bins else: num_bins=None binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth) binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0) st.dataframe(binned_data_num,use_container_width=True,hide_index=True) st.write("Categorical binned data") binned_data_cat = pd.DataFrame() for col in st.session_state.categorical_columns: if function_cat == 'woe_iv': max_thre = max_slider min_thre = min_slider no_of_bins = cat_bins_iv else: max_thre = None min_thre = None no_of_bins = None if function_cat == 'naive': no_of_bins = cat_bins_naive else: no_of_bins=None binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore') binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str)) binned_data_col_cat.drop('column_name',axis=1,inplace=True) binned_data_cat = pd.concat([binned_data_cat, binned_data_col_cat],axis=0) st.dataframe(binned_data_cat,use_container_width=True,hide_index=True) with st.expander("Profiling summary: Plots"): st.markdown( "

Change the selected variable to plot" " different charts

", unsafe_allow_html=True, ) left, right = st.columns(2) with left: if 'selected_variable' not in st.session_state: st.session_state.selected_variable = [] # Initialize selected_variable selected_variable = st.selectbox( "Variable", st.session_state.numerical_columns + st.session_state.categorical_columns, # index=None ) if isinstance(selected_variable, str): selected_variable = [selected_variable] # Convert single selection to list # Update session state with selected variable st.session_state.selected_variable = selected_variable # Iterate over selected variable(s) if st.session_state.selected_variable: for col in st.session_state.selected_variable: if col in st.session_state.numerical_columns: if function_num == 'tree': depth = depth else: depth = None if function_num == 'value': num_bins = num_bins else: num_bins = None binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth) binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) fig = plot_chart(binned_data_col, col, dep_var=None) st.plotly_chart(fig, use_container_width=True) elif col in st.session_state.categorical_columns: if function_cat == 'woe_iv': max_thre = max_slider min_thre = min_slider no_of_bins = cat_bins_iv else: max_thre = None min_thre = None no_of_bins = None if function_cat == 'naive': no_of_bins = cat_bins_naive else: no_of_bins = None binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore') binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str)) binned_data_col_cat.drop('column_name', axis=1, inplace=True) fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None) st.plotly_chart(fig_cat, use_container_width=True) st.divider() # Combine numerical and categorical binned data into one dataframe binned_data_combined = pd.DataFrame() # Process numerical columns for col in st.session_state.numerical_columns: if function_num == 'tree': depth = depth else: depth=None if function_num == 'value': num_bins=num_bins else: num_bins=None # Your code to create numerical binned data binned_data_num = create_numerical_binned_data1(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth) binned_data_combined = pd.concat([binned_data_combined, binned_data_num], axis=1) # Process categorical columns for col in st.session_state.categorical_columns: if function_cat == 'woe_iv': max_thre = max_slider min_thre = min_slider no_of_bins = cat_bins_iv else: max_thre = None min_thre = None no_of_bins = None if function_cat == 'naive': no_of_bins = cat_bins_naive else: no_of_bins=None # Your code to create categorical binned data binned_data_cat = create_categorical_binned_data1(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore') binned_data_combined = pd.concat([binned_data_combined, binned_data_cat], axis=1) def clean_column_name(column_name): # Replace special characters with underscores except for the decimal point return re.sub(r'\.(\d+)', '', column_name) binned_data_combined.columns = binned_data_combined.columns.map(clean_column_name) valid_feature_names = [name.replace('[', '').replace(']', '').replace('<', '').replace(',', '_').replace('(', '').replace("'", '') for name in binned_data_combined.columns] valid_feature_names = [name.replace(' ', '').replace(' ', '') for name in valid_feature_names] binned_data_combined.columns = valid_feature_names # Display the combined binned data dataframe st.session_state.binned_df = binned_data_combined st.session_state.binned_df[st.session_state.flag]=st.session_state.imputed_df[st.session_state.flag] st.session_state.binned_df.insert(0, st.session_state.identifier, st.session_state.imputed_df[st.session_state.identifier]) print(st.session_state.binned_df['individual_id_ov']) #st.session_state.binned_df[st.session_state.identifier]=st.session_state.imputed_df[st.session_state.identifier] st.markdown("Binned DataFrame") st.dataframe(binned_data_combined.head(10), use_container_width=True, hide_index=True) # Add a button to download the binned dataframe if st.session_state.binned_df is not None: #with st.expander("Download Binned Data"): download_button = st.download_button( label="Download Binned Data as CSV", data=st.session_state.binned_df.to_csv(index=False).encode(), file_name='binned_data.csv', mime='text/csv', ) # Create a button to download the DataFrame as CSV #if st.button("Download Binned Data"): # binned_csv = binned_df.to_csv(index=False) # b64 = base64.b64encode(binned_csv.encode()).decode() # href = f'Download Binned Data CSV File' # st.markdown(href, unsafe_allow_html=True) # def download_button(data, file_name, button_text): # csv = data.to_csv(index=False).encode() # href = f'{button_text}' # st.markdown(href, unsafe_allow_html=True) # # Add the download button # download_button(binned_data_combined, 'data.csv', 'Download CSV') # with st.expander("Profiling summary: Plots"): # st.markdown( # "

Change the selected variable to plot" # " different charts

", # unsafe_allow_html=True, # ) # st.write("Numerical binned data plots") # for col in st.session_state.numerical_columns: # if function_num == 'tree': # depth = depth # else: # depth=None # if function_num == 'value': # num_bins=num_bins # else: # num_bins=None # binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth) # binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) # fig=plot_chart(binned_data_col, col, dep_var=None) # st.plotly_chart(fig, use_container_width=False) # st.write("Categorical binned data plots") # for col in st.session_state.categorical_columns: # if function_cat == 'woe_iv': # max_thre = max_slider # min_thre = min_slider # no_of_bins = cat_bins_iv # else: # max_thre = None # min_thre = None # no_of_bins = None # if function_cat == 'naive': # no_of_bins = cat_bins_naive # else: # no_of_bins=None # binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore') # binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str)) # binned_data_col_cat.drop('column_name',axis=1,inplace=True) # fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None) # st.plotly_chart(fig_cat, use_container_width=False)