import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
from tqdm import tqdm
from matplotlib.ticker import MaxNLocator
import streamlit as st
import ast
from collections import defaultdict
from scipy.cluster.hierarchy import linkage, fcluster, dendrogram
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.preprocessing import LabelEncoder
#from kmodes.kmodes import KModes
import matplotlib.pyplot as plt
import seaborn as sns
#from kmodes.kprototypes import KPrototypes
import warnings
import pandas as pd
import numpy as np
from scipy import stats
import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import pdist
import os
import re
import time
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import numpy as np
import plotly.express as px
import base64
def tree_based_bin_data(df, column_name, dep_var, depth_of_tree):
df2 = df.copy()
df2 = df2.loc[df2[column_name].notnull()]
x = df2[column_name].values.reshape(-1, 1)
y = df2[dep_var].values
params = {'max_depth': range(2, depth_of_tree + 1), 'min_samples_split': [2, 3, 5, 10], 'min_samples_leaf': [int(np.ceil(0.05 * len(x)))]}
clf = DecisionTreeClassifier()
g_search = GridSearchCV(clf, param_grid=params, scoring='accuracy')
g_search.fit(x, y)
best_clf = g_search.best_estimator_
bin_edges = best_clf.tree_.threshold
bin_edges = sorted(set(bin_edges[bin_edges != -2]))
tree_based_binned_data = value_bin_data(df, column_name, bin_edges)
return tree_based_binned_data
def decile_bin_data(df, col, no_of_bins):
decile_binned_data = pd.qcut(df[col], no_of_bins, duplicates='drop')
return decile_binned_data
def value_bin_data(df, col, no_of_bins):
value_binned_data = pd.cut(df[col], no_of_bins, duplicates='drop')
return value_binned_data
def col_bin_summary_numerical(bin_df, col, dep_var=None):
unique_bin_edges = bin_df[col].unique()
df_new = pd.DataFrame({"bin_ranges": unique_bin_edges})
try:
df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={'index': 'bin_ranges', col: 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
except:
df_new = df_new.merge((bin_df[col].value_counts() / len(bin_df) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
if dep_var is not None:
df_new = df_new.merge(bin_df.groupby(col)[dep_var].sum().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges', how='left')
df_new = df_new.merge(bin_df.groupby(col)[dep_var].mean().reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges', how='left')
df_new['Index'] = (100 * df_new['Mean_DV'] / bin_df['Y'].mean()).round()
df_new = df_new[['bin_ranges', 'count%', 'Event', 'Mean_DV', 'Index']]
df_new = df_new.sort_values(by='bin_ranges')
return df_new
def plot_chart(df, col, dep_var):
#fig = go.Figure()
df['bin_ranges_str'] = df['bin_ranges'].astype(str)
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Bar trace for Count%
fig.add_trace(
go.Bar(
x=df['bin_ranges_str'],
y=df['count%'],
name='Count%',
marker_color='#053057',
hovertemplate=(
f"Bin: %{{x}}
"
f"Count%: %{{y}}"
),
)
)
# Add the line trace for Index on the secondary y-axis
fig.add_trace(
go.Scatter(
x=df['bin_ranges_str'],
y=df['Index'],
mode='lines+markers',
name='Index',
marker=dict(color="#8ac4f8"),
hovertemplate=(
f"Bin: %{{x}}
"
f"Index%: %{{y}}"
),
),
secondary_y=True
)
# Update layout
fig.update_layout(
title=f'Distribution of {col}',
xaxis=dict(title='Bin_ranges'),
yaxis=dict(title='Count%', color='#053057'),
yaxis2=dict(title='Index', color="#8ac4f8", overlaying='y', side='right'),
legend=dict(x=1.02, y=0.98),
hovermode='x'
)
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
return fig
# def plot_chart(df, col, dep_var=None):
# fig, ax1 = plt.subplots(figsize=(10, 6))
# # Convert Interval type to string
# df['bin_ranges_str'] = df['bin_ranges'].astype(str)
# ax1.bar(df['bin_ranges_str'], df['count%'], color='b', alpha=0.7, label='Count%')
# ax1.set_xlabel('Bin Ranges')
# ax1.set_ylabel('Count%', color='b')
# if dep_var is not None:
# ax2 = ax1.twinx()
# ax2.plot(df['bin_ranges_str'], df['Index'], color='r', marker='o', label='Index')
# ax2.set_ylabel('Index', color='r')
# ax1.set_title(f'Distribution of {col}')
# ax1.legend(loc='upper left')
# return st.plotly_chart(fig)
def create_numerical_binned_data(df, col, func,no_of_bins=None,dep_var=None, depth=None):
df_org = df.copy()
if dep_var is not None:
df_org[dep_var] = df_org[dep_var].astype('int64')
df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1)
if func == 'tree':
bin_df = tree_based_bin_data(df, col, dep_var, depth)
elif func == 'decile':
bin_df = decile_bin_data(df_num, col, 10)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1)
else:
df_num = df_org.select_dtypes(include=[np.number])
if func == 'decile':
bin_df = decile_bin_data(df_num, col, no_of_bins)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
df_summary = col_bin_summary_numerical(bin_df,col, dep_var)
return df_summary
def create_numerical_binned_data1(df, col, func,no_of_bins,dep_var,depth=None):
df_org = df.copy()
df_org[dep_var] = df_org[dep_var].astype('int64')
df_num = df_org.select_dtypes(include=[np.number]).drop(dep_var, axis=1)
if func == 'tree':
bin_df = tree_based_bin_data(df, col, dep_var, depth)
elif func == 'decile':
bin_df = decile_bin_data(df_num, col, no_of_bins)
else:
bin_df = value_bin_data(df_num, col, no_of_bins)
bin_df = pd.concat([bin_df, df_org[dep_var]], axis=1)
binned_data=pd.DataFrame()
binned_data[col]=df_org[col]
unique_bins = bin_df[col].unique()
for bin_value in unique_bins:
bin_column_name = f"{col}_{bin_value}"
binned_data[bin_column_name] = np.where(binned_data[col] == bin_value, df_org[col], 0)
return binned_data
#Categorical cols binning
def woe_iv(df, column_name, dep_var, no_of_bins):
y0 = df[dep_var].value_counts()[0]
y1 = df[dep_var].value_counts()[1]
if df[column_name].nunique() < 10:
data = pd.Series(pd.factorize(df[column_name])[0] + 1, index=df.index).rename('{}'.format(column_name)).apply(lambda x: f'bin{x}')
else:
df_woe_iv = (pd.crosstab(df[column_name], df[dep_var], normalize='columns').assign(woe=lambda dfx: np.log((dfx[1] + (0.5 / y1)) / (dfx[0] + (0.5 / y0)))).assign(iv=lambda dfx: (dfx['woe'] * (dfx[1] - dfx[0]))))
woe_map = df_woe_iv['woe'].to_dict()
woe_col = df[column_name].map(woe_map)
data = pd.qcut(woe_col, no_of_bins, duplicates='drop')
n = data.nunique()
labels = [f'bin{i}' for i in range(1, n + 1)]
data = data.cat.rename_categories(labels)
sizes = data.value_counts(normalize=True)
min_size = 0.05
while sizes.min() < min_size and no_of_bins > 1:
no_of_bins -= 1
data = pd.qcut(woe_col, q=no_of_bins, duplicates='drop')
if data.nunique() != data.cat.categories.nunique():
continue
n = data.nunique()
labels = [f'bin{i}' for i in range(1, n + 1)]
data = data.cat.rename_categories(labels)
sizes = data.value_counts(normalize=True)
return data
def naive_cat_bin(df, col, max_thre=10, min_thre=5, tolerence=2, flag='ignore'):
value_counts = df[col].value_counts()
total_values = len(df)
count_percentages = (value_counts / total_values) * 100
unique_values_df = pd.DataFrame({'Category': value_counts.index, 'Count Percentage': count_percentages})
count_per = list(unique_values_df['Count Percentage'])
final_ini = []
for i in count_per:
if i >= min_thre:
final_ini.append(i)
a = [x for x in count_per if x not in final_ini]
total_bins = int(100 / max_thre)
ava_bins = len(final_ini)
ava_bin_per = sum(final_ini)
bin_req = total_bins - ava_bins
bin_req_per = 100 - ava_bin_per
if flag == 'error' and bin_req > 0 and (bin_req_per / bin_req) > max_thre:
print(f"Binning for {col} is not possible with given parameters.")
return
step = False
while not step:
if bin_req > 0:
if (bin_req_per / bin_req) > min_thre:
step = True
else:
bin_req -= 1
else:
step = True
final_ini = [[x] for x in final_ini]
if bin_req > 0:
target_sum = bin_req_per / bin_req
else:
target_sum = bin_req_per
tolerence = 0
final = []
current_sum = 0.0
start_index = len(a) - 1
values = []
while start_index >= 0:
current_sum += a[start_index]
values.append(a[start_index])
if current_sum < target_sum - tolerence:
start_index -= 1
else:
final.append(values)
values = []
start_index -= 1
current_sum = 0.0
final.append(values)
final = final[::-1]
final = [sublist for sublist in final if sublist]
final_b = final_ini + final
final = [final_b[0]]
for subarr in final_b[1:]:
if sum(subarr) < (min_thre - tolerence):
final[-1].extend(subarr)
else:
final.append(subarr)
table = dict(zip(unique_values_df['Category'], unique_values_df['Count Percentage']))
new_final = [sublist.copy() for sublist in final]
table_reverse = defaultdict(list)
for k, v in table.items():
table_reverse[v].append(k)
output = []
for l in new_final:
temp = []
for item in l:
temp.append(table_reverse[item].pop())
output.append(temp)
new_final = output
k = len(new_final)
bin_labels = [f'bin{i}' for i in range(1, k + 1)]
bin_mapping = {value: bin_labels[i] for i, sublist in enumerate(new_final) for value in sublist}
bin_mapping[np.nan] = 'binNA'
return df[col].apply(lambda x: bin_mapping.get(x, x))
def col_bin_summary_categorical(df_cat, col, binned_df_1,dep_var=None):
unique_values_in_bins = df_cat.groupby(binned_df_1[col])[col].unique().apply(list)
unique_values_in_bins = unique_values_in_bins.rename_axis('bin').reset_index()
unique_bin_ranges = pd.Categorical(binned_df_1[col].unique())
uni = binned_df_1[col].nunique()
numeric_parts = [uni if val == 'binNA' else int(re.findall(r'\d+', val)[0]) for val in unique_bin_ranges]
unique_bin_ranges = unique_bin_ranges[np.argsort(numeric_parts)]
df_new_cat = pd.DataFrame({"column_name": [col] * len(unique_bin_ranges), "bin_ranges": unique_bin_ranges})
df_new_cat = df_new_cat.merge(unique_values_in_bins.rename(columns={'bin': 'bin_ranges', col: 'values in bin'}))
df_new_cat = df_new_cat.merge((binned_df_1[col].value_counts() / len(binned_df_1) * 100).reset_index().rename(columns={col: 'bin_ranges', 'count': 'count%'}).sort_values(by='bin_ranges').reset_index(drop=True), on='bin_ranges').round(2)
if dep_var is not None:
df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].sum(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Event'}), on='bin_ranges')
df_new_cat = df_new_cat.merge(binned_df_1.groupby(col)[dep_var].mean(numeric_only=True).reset_index().rename(columns={col: 'bin_ranges', dep_var: 'Mean_DV'}), on='bin_ranges')
df_new_cat['Index'] = (100 * df_new_cat['Mean_DV'] / binned_df_1[dep_var].mean()).round()
return df_new_cat
def create_categorical_binned_data(imputed_df,col, categorical_binning, dep_var, no_of_bins=None, max_thre=None, min_thre=None,tolerence=2, flag='ignore'):
imputed_df[dep_var] = imputed_df[dep_var].astype('int64')
df_cat = imputed_df.select_dtypes(include=['object'])
# remove columns with only one unique values
unique_counts = df_cat.nunique()
unique_cols = unique_counts[unique_counts == 1].index.tolist()
df_cat = df_cat.drop(unique_cols, axis=1)
if categorical_binning == 'woe_iv':
df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dep_var, no_of_bins))
binned_df_nominal.drop(dep_var, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x)
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1)
elif categorical_binning == 'naive':
df_nominal = pd.concat([imputed_df[col], imputed_df[dep_var]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore'))
binned_df_nominal.drop(dep_var, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all')
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dep_var]], axis=1)
df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dep_var)
return df_summary
def create_categorical_binned_data1(imputed_df,col, nominal_binning, dependant_target_variable, no_of_bins=10, max_thre=10, min_thre=5, tolerence=2, flag='ignore', min_cluster_size=0.05, max_clusters=10):
imputed_df[dependant_target_variable] = imputed_df[dependant_target_variable].astype('int64')
df_cat = imputed_df.select_dtypes(include=['object'])
# remove columns with only one unique values
unique_counts = df_cat.nunique()
unique_cols = unique_counts[unique_counts == 1].index.tolist()
df_cat = df_cat.drop(unique_cols, axis=1)
if nominal_binning == 'woe':
df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: woe_iv(df_nominal, x.name, dependant_target_variable, no_of_bins))
binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.applymap(lambda x: 'NA' if pd.isnull(x) else x)
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1)
elif nominal_binning == 'naive':
df_nominal = pd.concat([imputed_df[col], imputed_df[dependant_target_variable]], axis=1)
tqdm.pandas(dynamic_ncols=True, position=0)
binned_df_nominal = df_nominal.progress_apply(lambda x: naive_cat_bin(df_nominal, x.name, 20, 5, 2, flag='ignore'))
binned_df_nominal.drop(dependant_target_variable, axis=1, inplace=True)
binned_df_nominal = binned_df_nominal.dropna(axis=1, how='all')
binned_df_nominal = binned_df_nominal.astype('category')
cols_with_one_unique_bin = binned_df_nominal.columns[binned_df_nominal.nunique() == 1]
binned_df_nominal.drop(cols_with_one_unique_bin, axis=1, inplace=True)
binned_df_nominal_1 = pd.concat([binned_df_nominal, imputed_df[dependant_target_variable]], axis=1)
df_summary=col_bin_summary_categorical(df_cat, col, binned_df_nominal_1,dependant_target_variable)
binned_data = pd.DataFrame()
for bin_value in df_summary['values in bin']:
bin_column_name = f"{col}_{bin_value}"
binned_data[bin_column_name] = np.where(df_cat[col].isin(bin_value), 1, 0)
return binned_data
numerical_columns = st.session_state.imputed_df.select_dtypes(include=['number']).columns.tolist()
numerical_columns = [x for x in numerical_columns if x != st.session_state.flag]
categorical_columns = st.session_state.imputed_df.select_dtypes(include=['object', 'category']).columns.tolist()
categorical_columns = [x for x in categorical_columns if x != st.session_state.identifier]
st.session_state.numerical_columns=numerical_columns
st.session_state.categorical_columns=categorical_columns
st.title("Variable Profiling")
# Retrieve stored options from session_state or use default values
function_num = st.session_state.get("function_num", "value")
depth = st.session_state.get("depth", 3)
num_bins = st.session_state.get("num_bins", 10)
function_cat = st.session_state.get("function_cat", "woe_iv")
max_slider = st.session_state.get("max_slider", 10)
min_slider = st.session_state.get("min_slider", 5)
cat_bins_iv = st.session_state.get("cat_bins_iv", 10)
cat_bins_naive = st.session_state.get("cat_bins_naive", 10)
with st.expander("Profiling Inputs"):
st.write("Binning Inputs")
ui_columns = st.columns((1, 1))
with ui_columns[0]:
function_num = st.selectbox(
label="Select Numerical Binning Function",
options=['value', 'tree'],
#index=None
index=['value', 'tree'].index(st.session_state.function_num) if 'function_num' in st.session_state and st.session_state.function_num is not None else None
)
st.session_state.function_num = function_num # Store selected option
params_num = st.empty()
with params_num:
with ui_columns[-1]:
if function_num == 'tree':
depth = st.slider(
label="Depth",
min_value=1,
max_value=10,
value=depth,
key='depth_slider')
st.session_state.depth = depth # Store selected depth
elif function_num == 'value':
num_bins = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=num_bins,
key='num_bins_slider_num')
st.session_state.num_bins = num_bins # Store selected number of bins
left, right = st.columns(2)
with left:
function_cat = st.selectbox(
label="Select Categorical Binning Function",
options=['woe_iv', 'naive'],
#index=None
index=['woe_iv', 'naive'].index(st.session_state.function_cat) if 'function_cat' in st.session_state and st.session_state.function_cat is not None else None
)
st.session_state.function_cat = function_cat # Store selected option
params_cat = st.empty()
with params_cat:
if function_cat == 'woe_iv':
with right:
cat_bins_iv = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=cat_bins_iv,
key='num_bins_slider_cat_iv')
st.session_state.cat_bins_iv = cat_bins_iv # Store selected number of bins
with left:
min_slider = st.slider(
label="Min Threshold",
min_value=1,
max_value=100,
value=min_slider,
key='min_slider')
st.session_state.min_slider = min_slider # Store selected min threshold
with right:
max_slider = st.slider(
label="Max Threshold",
min_value=1,
max_value=100,
value=max_slider,
key='max_slider')
st.session_state.max_slider = max_slider # Store selected max threshold
elif function_cat == 'naive':
with right:
cat_bins_naive = st.slider(
label="Number of Bins",
min_value=2,
max_value=20,
value=cat_bins_naive,
key='num_bins_slider_cat_naive')
st.session_state.cat_bins_naive = cat_bins_naive # Store selected number of bins
with left:
st.write("#")
perform_profiling = st.button(
label="Perform profiling"
)
# if perform_profiling:
# binned_data_num = pd.DataFrame()
# for col in st.session_state.numerical_columns:
# if function_num == 'tree':
# depth = depth
# else:
# depth=None
# if function_num == 'value':
# num_bins=num_bins
# else:
# num_bins=None
# binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth)
# binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
# binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0)
# st.markdown("binned_data_num")
# st.dataframe(binned_data_num,use_container_width=True,hide_index=True)
if perform_profiling:
with st.expander("Profiling summary"):
st.write("Numerical binned data")
binned_data_num = pd.DataFrame()
for col in st.session_state.numerical_columns:
if function_num == 'tree':
depth = depth
else:
depth=None
if function_num == 'value':
num_bins=num_bins
else:
num_bins=None
binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth)
binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str))
binned_data_num = pd.concat([binned_data_num, binned_data_col],axis=0)
st.dataframe(binned_data_num,use_container_width=True,hide_index=True)
st.write("Categorical binned data")
binned_data_cat = pd.DataFrame()
for col in st.session_state.categorical_columns:
if function_cat == 'woe_iv':
max_thre = max_slider
min_thre = min_slider
no_of_bins = cat_bins_iv
else:
max_thre = None
min_thre = None
no_of_bins = None
if function_cat == 'naive':
no_of_bins = cat_bins_naive
else:
no_of_bins=None
binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore')
binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str))
binned_data_col_cat.drop('column_name',axis=1,inplace=True)
binned_data_cat = pd.concat([binned_data_cat, binned_data_col_cat],axis=0)
st.dataframe(binned_data_cat,use_container_width=True,hide_index=True)
with st.expander("Profiling summary: Plots"):
st.markdown(
"
Change the selected variable to plot" " different charts
", unsafe_allow_html=True, ) left, right = st.columns(2) with left: if 'selected_variable' not in st.session_state: st.session_state.selected_variable = [] # Initialize selected_variable selected_variable = st.selectbox( "Variable", st.session_state.numerical_columns + st.session_state.categorical_columns, # index=None ) if isinstance(selected_variable, str): selected_variable = [selected_variable] # Convert single selection to list # Update session state with selected variable st.session_state.selected_variable = selected_variable # Iterate over selected variable(s) if st.session_state.selected_variable: for col in st.session_state.selected_variable: if col in st.session_state.numerical_columns: if function_num == 'tree': depth = depth else: depth = None if function_num == 'value': num_bins = num_bins else: num_bins = None binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth) binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) fig = plot_chart(binned_data_col, col, dep_var=None) st.plotly_chart(fig, use_container_width=True) elif col in st.session_state.categorical_columns: if function_cat == 'woe_iv': max_thre = max_slider min_thre = min_slider no_of_bins = cat_bins_iv else: max_thre = None min_thre = None no_of_bins = None if function_cat == 'naive': no_of_bins = cat_bins_naive else: no_of_bins = None binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore') binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str)) binned_data_col_cat.drop('column_name', axis=1, inplace=True) fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None) st.plotly_chart(fig_cat, use_container_width=True) st.divider() # Combine numerical and categorical binned data into one dataframe binned_data_combined = pd.DataFrame() # Process numerical columns for col in st.session_state.numerical_columns: if function_num == 'tree': depth = depth else: depth=None if function_num == 'value': num_bins=num_bins else: num_bins=None # Your code to create numerical binned data binned_data_num = create_numerical_binned_data1(st.session_state.imputed_df, col, function_num, num_bins, st.session_state.flag, depth) binned_data_combined = pd.concat([binned_data_combined, binned_data_num], axis=1) # Process categorical columns for col in st.session_state.categorical_columns: if function_cat == 'woe_iv': max_thre = max_slider min_thre = min_slider no_of_bins = cat_bins_iv else: max_thre = None min_thre = None no_of_bins = None if function_cat == 'naive': no_of_bins = cat_bins_naive else: no_of_bins=None # Your code to create categorical binned data binned_data_cat = create_categorical_binned_data1(st.session_state.imputed_df, col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre, tolerence=2, flag='ignore') binned_data_combined = pd.concat([binned_data_combined, binned_data_cat], axis=1) def clean_column_name(column_name): # Replace special characters with underscores except for the decimal point return re.sub(r'\.(\d+)', '', column_name) binned_data_combined.columns = binned_data_combined.columns.map(clean_column_name) valid_feature_names = [name.replace('[', '').replace(']', '').replace('<', '').replace(',', '_').replace('(', '').replace("'", '') for name in binned_data_combined.columns] valid_feature_names = [name.replace(' ', '').replace(' ', '') for name in valid_feature_names] binned_data_combined.columns = valid_feature_names # Display the combined binned data dataframe st.session_state.binned_df = binned_data_combined st.session_state.binned_df[st.session_state.flag]=st.session_state.imputed_df[st.session_state.flag] st.session_state.binned_df.insert(0, st.session_state.identifier, st.session_state.imputed_df[st.session_state.identifier]) print(st.session_state.binned_df['individual_id_ov']) #st.session_state.binned_df[st.session_state.identifier]=st.session_state.imputed_df[st.session_state.identifier] st.markdown("Binned DataFrame") st.dataframe(binned_data_combined.head(10), use_container_width=True, hide_index=True) # Add a button to download the binned dataframe if st.session_state.binned_df is not None: #with st.expander("Download Binned Data"): download_button = st.download_button( label="Download Binned Data as CSV", data=st.session_state.binned_df.to_csv(index=False).encode(), file_name='binned_data.csv', mime='text/csv', ) # Create a button to download the DataFrame as CSV #if st.button("Download Binned Data"): # binned_csv = binned_df.to_csv(index=False) # b64 = base64.b64encode(binned_csv.encode()).decode() # href = f'Download Binned Data CSV File' # st.markdown(href, unsafe_allow_html=True) # def download_button(data, file_name, button_text): # csv = data.to_csv(index=False).encode() # href = f'{button_text}' # st.markdown(href, unsafe_allow_html=True) # # Add the download button # download_button(binned_data_combined, 'data.csv', 'Download CSV') # with st.expander("Profiling summary: Plots"): # st.markdown( # "Change the selected variable to plot" # " different charts
", # unsafe_allow_html=True, # ) # st.write("Numerical binned data plots") # for col in st.session_state.numerical_columns: # if function_num == 'tree': # depth = depth # else: # depth=None # if function_num == 'value': # num_bins=num_bins # else: # num_bins=None # binned_data_col = create_numerical_binned_data(st.session_state.imputed_df, col, function_num,num_bins,st.session_state.flag, depth) # binned_data_col.insert(0, 'column_bin', col + '_' + binned_data_col['bin_ranges'].astype(str)) # fig=plot_chart(binned_data_col, col, dep_var=None) # st.plotly_chart(fig, use_container_width=False) # st.write("Categorical binned data plots") # for col in st.session_state.categorical_columns: # if function_cat == 'woe_iv': # max_thre = max_slider # min_thre = min_slider # no_of_bins = cat_bins_iv # else: # max_thre = None # min_thre = None # no_of_bins = None # if function_cat == 'naive': # no_of_bins = cat_bins_naive # else: # no_of_bins=None # binned_data_col_cat = create_categorical_binned_data(st.session_state.imputed_df,col, function_cat, st.session_state.flag, no_of_bins=no_of_bins, max_thre=max_thre, min_thre=min_thre,tolerence=2, flag='ignore') # binned_data_col_cat.insert(0, 'column_bin', col + '_' + binned_data_col_cat['values in bin'].astype(str)) # binned_data_col_cat.drop('column_name',axis=1,inplace=True) # fig_cat = plot_chart(binned_data_col_cat, col, dep_var=None) # st.plotly_chart(fig_cat, use_container_width=False)