Blood076 commited on
Commit
3e259e9
·
verified ·
1 Parent(s): f20c2b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -5
app.py CHANGED
@@ -1,14 +1,155 @@
 
 
 
 
 
 
1
  from diffusers import DiffusionPipeline
2
  import torch
3
 
4
  device = "cuda" if torch.cuda.is_available() else "cpu"
5
- model_repo_id = "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA"
6
 
7
- torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
 
 
 
8
 
9
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
10
  pipe = pipe.to(device)
11
 
12
- pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
13
- trigger_word = "Turbo Realism"
14
- pipe.fuse_lora(lora_scale=1.0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+
5
+
6
+ # import spaces #[uncomment to use ZeroGPU]
7
  from diffusers import DiffusionPipeline
8
  import torch
9
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model_repo_id = "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA" # Replace to the model you would like to use
12
 
13
+ if torch.cuda.is_available():
14
+ torch_dtype = torch.float16
15
+ else:
16
+ torch_dtype = torch.float32
17
 
18
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
19
  pipe = pipe.to(device)
20
 
21
+ MAX_SEED = np.iinfo(np.int32).max
22
+ MAX_IMAGE_SIZE = 1024
23
+
24
+
25
+ # @spaces.GPU #[uncomment to use ZeroGPU]
26
+ def infer(
27
+ prompt,
28
+ negative_prompt,
29
+ seed,
30
+ randomize_seed,
31
+ width,
32
+ height,
33
+ guidance_scale,
34
+ num_inference_steps,
35
+ progress=gr.Progress(track_tqdm=True),
36
+ ):
37
+ if randomize_seed:
38
+ seed = random.randint(0, MAX_SEED)
39
+
40
+ generator = torch.Generator().manual_seed(seed)
41
+
42
+ image = pipe(
43
+ prompt=prompt,
44
+ negative_prompt=negative_prompt,
45
+ guidance_scale=guidance_scale,
46
+ num_inference_steps=num_inference_steps,
47
+ width=width,
48
+ height=height,
49
+ generator=generator,
50
+ ).images[0]
51
+
52
+ return image, seed
53
+
54
+
55
+ examples = [
56
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
57
+ "An astronaut riding a green horse",
58
+ "A delicious ceviche cheesecake slice",
59
+ ]
60
+
61
+ css = """
62
+ #col-container {
63
+ margin: 0 auto;
64
+ max-width: 640px;
65
+ }
66
+ """
67
+
68
+ with gr.Blocks(css=css) as demo:
69
+ with gr.Column(elem_id="col-container"):
70
+ gr.Markdown(" # Text-to-Image Gradio Template")
71
+
72
+ with gr.Row():
73
+ prompt = gr.Text(
74
+ label="Prompt",
75
+ show_label=False,
76
+ max_lines=1,
77
+ placeholder="Enter your prompt",
78
+ container=False,
79
+ )
80
+
81
+ run_button = gr.Button("Run", scale=0, variant="primary")
82
+
83
+ result = gr.Image(label="Result", show_label=False)
84
+
85
+ with gr.Accordion("Advanced Settings", open=False):
86
+ negative_prompt = gr.Text(
87
+ label="Negative prompt",
88
+ max_lines=1,
89
+ placeholder="Enter a negative prompt",
90
+ visible=False,
91
+ )
92
+
93
+ seed = gr.Slider(
94
+ label="Seed",
95
+ minimum=0,
96
+ maximum=MAX_SEED,
97
+ step=1,
98
+ value=0,
99
+ )
100
+
101
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
102
+
103
+ with gr.Row():
104
+ width = gr.Slider(
105
+ label="Width",
106
+ minimum=256,
107
+ maximum=MAX_IMAGE_SIZE,
108
+ step=32,
109
+ value=1024, # Replace with defaults that work for your model
110
+ )
111
+
112
+ height = gr.Slider(
113
+ label="Height",
114
+ minimum=256,
115
+ maximum=MAX_IMAGE_SIZE,
116
+ step=32,
117
+ value=1024, # Replace with defaults that work for your model
118
+ )
119
+
120
+ with gr.Row():
121
+ guidance_scale = gr.Slider(
122
+ label="Guidance scale",
123
+ minimum=0.0,
124
+ maximum=10.0,
125
+ step=0.1,
126
+ value=0.0, # Replace with defaults that work for your model
127
+ )
128
+
129
+ num_inference_steps = gr.Slider(
130
+ label="Number of inference steps",
131
+ minimum=1,
132
+ maximum=50,
133
+ step=1,
134
+ value=1, # Replace with defaults that work for your model
135
+ )
136
+
137
+ gr.Examples(examples=examples, inputs=[prompt])
138
+ gr.on(
139
+ triggers=[run_button.click, prompt.submit],
140
+ fn=infer,
141
+ inputs=[
142
+ prompt,
143
+ negative_prompt,
144
+ seed,
145
+ randomize_seed,
146
+ width,
147
+ height,
148
+ guidance_scale,
149
+ num_inference_steps,
150
+ ],
151
+ outputs=[result, seed],
152
+ )
153
+
154
+ if __name__ == "__main__":
155
+ demo.launch()