Spaces:
Sleeping
Sleeping
File size: 41,505 Bytes
c92c0ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
import glob
import random
import time
from typing import Any, Callable, Dict, List, Optional, Union
# import moxing as mox
import numpy as np
import torch
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.pipelines.stable_diffusion import (
StableDiffusionPipeline,
StableDiffusionPipelineOutput,
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from PIL import Image, ImageDraw, ImageFont
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import inspect
import os
import math
import torch.nn as nn
import torch.nn.functional as F
# from utils import load_utils
import argparse
import yaml
import cv2
import math
from migc.migc_arch import MIGC, NaiveFuser
from scipy.ndimage import uniform_filter, gaussian_filter
logger = logging.get_logger(__name__)
class AttentionStore:
@staticmethod
def get_empty_store():
return {"down": [], "mid": [], "up": []}
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if is_cross:
if attn.shape[1] in self.attn_res:
self.step_store[place_in_unet].append(attn)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers:
self.cur_att_layer = 0
self.between_steps()
def between_steps(self):
self.attention_store = self.step_store
self.step_store = self.get_empty_store()
def maps(self, block_type: str):
return self.attention_store[block_type]
def reset(self):
self.cur_att_layer = 0
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self, attn_res=[64*64, 32*32, 16*16, 8*8]):
"""
Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion
process
"""
self.num_att_layers = -1
self.cur_att_layer = 0
self.step_store = self.get_empty_store()
self.attention_store = {}
self.curr_step_index = 0
self.attn_res = attn_res
def get_sup_mask(mask_list):
or_mask = np.zeros_like(mask_list[0])
for mask in mask_list:
or_mask += mask
or_mask[or_mask >= 1] = 1
sup_mask = 1 - or_mask
return sup_mask
class MIGCProcessor(nn.Module):
def __init__(self, config, attnstore, place_in_unet):
super().__init__()
self.attnstore = attnstore
self.place_in_unet = place_in_unet
self.not_use_migc = config['not_use_migc']
self.naive_fuser = NaiveFuser()
self.embedding = {}
if not self.not_use_migc:
self.migc = MIGC(config['C'])
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
prompt_nums=[],
bboxes=[],
ith=None,
embeds_pooler=None,
timestep=None,
height=512,
width=512,
MIGCsteps=20,
NaiveFuserSteps=-1,
ca_scale=None,
ea_scale=None,
sac_scale=None,
use_sa_preserve=False,
sa_preserve=False,
):
batch_size, sequence_length, _ = hidden_states.shape
assert(batch_size == 2, "We currently only implement sampling with batch_size=1, \
and we will implement sampling with batch_size=N as soon as possible.")
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
instance_num = len(bboxes[0])
if ith > MIGCsteps:
not_use_migc = True
else:
not_use_migc = self.not_use_migc
is_vanilla_cross = (not_use_migc and ith > NaiveFuserSteps)
if instance_num == 0:
is_vanilla_cross = True
is_cross = encoder_hidden_states is not None
ori_hidden_states = hidden_states.clone()
# Only Need Negative Prompt and Global Prompt.
if is_cross and is_vanilla_cross:
encoder_hidden_states = encoder_hidden_states[:2, ...]
# In this case, we need to use MIGC or naive_fuser, so we copy the hidden_states_cond (instance_num+1) times for QKV
if is_cross and not is_vanilla_cross:
hidden_states_uncond = hidden_states[[0], ...]
hidden_states_cond = hidden_states[[1], ...].repeat(instance_num + 1, 1, 1)
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])
# QKV Operation of Vanilla Self-Attention or Cross-Attention
query = attn.to_q(hidden_states)
if (
not is_cross
and use_sa_preserve
and timestep.item() in self.embedding
and self.place_in_unet == "up"
):
hidden_states = torch.cat((hidden_states, torch.from_numpy(self.embedding[timestep.item()]).to(hidden_states.device)), dim=1)
if not is_cross and sa_preserve and self.place_in_unet == "up":
self.embedding[timestep.item()] = ori_hidden_states.cpu().numpy()
encoder_hidden_states = (
encoder_hidden_states
if encoder_hidden_states is not None
else hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask) # 48 4096 77
self.attnstore(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
###### Self-Attention Results ######
if not is_cross:
return hidden_states
###### Vanilla Cross-Attention Results ######
if is_vanilla_cross:
return hidden_states
###### Cross-Attention with MIGC ######
assert (not is_vanilla_cross)
# hidden_states: torch.Size([1+1+instance_num, HW, C]), the first 1 is the uncond ca output, the second 1 is the global ca output.
hidden_states_uncond = hidden_states[[0], ...] # torch.Size([1, HW, C])
cond_ca_output = hidden_states[1: , ...].unsqueeze(0) # torch.Size([1, 1+instance_num, 5, 64, 1280])
guidance_masks = []
in_box = []
# Construct Instance Guidance Mask
for bbox in bboxes[0]:
guidance_mask = np.zeros((height, width))
w_min = int(width * bbox[0])
w_max = int(width * bbox[2])
h_min = int(height * bbox[1])
h_max = int(height * bbox[3])
guidance_mask[h_min: h_max, w_min: w_max] = 1.0
guidance_masks.append(guidance_mask[None, ...])
in_box.append([bbox[0], bbox[2], bbox[1], bbox[3]])
# Construct Background Guidance Mask
sup_mask = get_sup_mask(guidance_masks)
supplement_mask = torch.from_numpy(sup_mask[None, ...])
supplement_mask = F.interpolate(supplement_mask, (height//8, width//8), mode='bilinear').float()
supplement_mask = supplement_mask.to(hidden_states.device) # (1, 1, H, W)
guidance_masks = np.concatenate(guidance_masks, axis=0)
guidance_masks = guidance_masks[None, ...]
guidance_masks = torch.from_numpy(guidance_masks).float().to(cond_ca_output.device)
guidance_masks = F.interpolate(guidance_masks, (height//8, width//8), mode='bilinear') # (1, instance_num, H, W)
in_box = torch.from_numpy(np.array(in_box))[None, ...].float().to(cond_ca_output.device) # (1, instance_num, 4)
other_info = {}
other_info['image_token'] = hidden_states_cond[None, ...]
other_info['context'] = encoder_hidden_states[1:, ...]
other_info['box'] = in_box
other_info['context_pooler'] =embeds_pooler # (instance_num, 1, 768)
other_info['supplement_mask'] = supplement_mask
other_info['attn2'] = None
other_info['attn'] = attn
other_info['height'] = height
other_info['width'] = width
other_info['ca_scale'] = ca_scale
other_info['ea_scale'] = ea_scale
other_info['sac_scale'] = sac_scale
if not not_use_migc:
hidden_states_cond, fuser_info = self.migc(cond_ca_output,
guidance_masks,
other_info=other_info,
return_fuser_info=True)
else:
hidden_states_cond, fuser_info = self.naive_fuser(cond_ca_output,
guidance_masks,
other_info=other_info,
return_fuser_info=True)
hidden_states_cond = hidden_states_cond.squeeze(1)
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])
return hidden_states
class StableDiffusionMIGCPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
):
# Get the parameter signature of the parent class constructor
parent_init_signature = inspect.signature(super().__init__)
parent_init_params = parent_init_signature.parameters
# Dynamically build a parameter dictionary based on the parameters of the parent class constructor
init_kwargs = {
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"safety_checker": safety_checker,
"feature_extractor": feature_extractor,
"requires_safety_checker": requires_safety_checker
}
if 'image_encoder' in parent_init_params.items():
init_kwargs['image_encoder'] = image_encoder
super().__init__(**init_kwargs)
self.instance_set = set()
self.embedding = {}
def _encode_prompt(
self,
prompts,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompts is not None and isinstance(prompts, str):
batch_size = 1
elif prompts is not None and isinstance(prompts, list):
batch_size = len(prompts)
else:
batch_size = prompt_embeds.shape[0]
prompt_embeds_none_flag = (prompt_embeds is None)
prompt_embeds_list = []
embeds_pooler_list = []
for prompt in prompts:
if prompt_embeds_none_flag:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[
-1
] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
embeds_pooler = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
embeds_pooler = embeds_pooler.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
embeds_pooler = embeds_pooler.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
embeds_pooler = embeds_pooler.view(
bs_embed * num_images_per_prompt, -1
)
prompt_embeds_list.append(prompt_embeds)
embeds_pooler_list.append(embeds_pooler)
prompt_embeds = torch.cat(prompt_embeds_list, dim=0)
embeds_pooler = torch.cat(embeds_pooler_list, dim=0)
# negative_prompt_embeds: (prompt_nums[0]+prompt_nums[1]+...prompt_nums[n], token_num, token_channel), <class 'torch.Tensor'>
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
negative_prompt = "worst quality, low quality, bad anatomy"
uncond_tokens = [negative_prompt] * batch_size
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=self.text_encoder.dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
# negative_prompt_embeds: (len(prompt_nums), token_num, token_channel), <class 'torch.Tensor'>
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
final_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return final_prompt_embeds, prompt_embeds, embeds_pooler[:, None, :]
def check_inputs(
self,
prompt,
token_indices,
bboxes,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None
and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if token_indices is not None:
if isinstance(token_indices, list):
if isinstance(token_indices[0], list):
if isinstance(token_indices[0][0], list):
token_indices_batch_size = len(token_indices)
elif isinstance(token_indices[0][0], int):
token_indices_batch_size = 1
else:
raise TypeError(
"`token_indices` must be a list of lists of integers or a list of integers."
)
else:
raise TypeError(
"`token_indices` must be a list of lists of integers or a list of integers."
)
else:
raise TypeError(
"`token_indices` must be a list of lists of integers or a list of integers."
)
if bboxes is not None:
if isinstance(bboxes, list):
if isinstance(bboxes[0], list):
if (
isinstance(bboxes[0][0], list)
and len(bboxes[0][0]) == 4
and all(isinstance(x, float) for x in bboxes[0][0])
):
bboxes_batch_size = len(bboxes)
elif (
isinstance(bboxes[0], list)
and len(bboxes[0]) == 4
and all(isinstance(x, float) for x in bboxes[0])
):
bboxes_batch_size = 1
else:
print(isinstance(bboxes[0], list), len(bboxes[0]))
raise TypeError(
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
)
else:
print(isinstance(bboxes[0], list), len(bboxes[0]))
raise TypeError(
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
)
else:
print(isinstance(bboxes[0], list), len(bboxes[0]))
raise TypeError(
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if token_indices_batch_size != prompt_batch_size:
raise ValueError(
f"token indices batch size must be same as prompt batch size. token indices batch size: {token_indices_batch_size}, prompt batch size: {prompt_batch_size}"
)
if bboxes_batch_size != prompt_batch_size:
raise ValueError(
f"bbox batch size must be same as prompt batch size. bbox batch size: {bboxes_batch_size}, prompt batch size: {prompt_batch_size}"
)
def get_indices(self, prompt: str) -> Dict[str, int]:
"""Utility function to list the indices of the tokens you wish to alte"""
ids = self.tokenizer(prompt).input_ids
indices = {
i: tok
for tok, i in zip(
self.tokenizer.convert_ids_to_tokens(ids), range(len(ids))
)
}
return indices
@staticmethod
def draw_box(pil_img: Image, bboxes: List[List[float]]) -> Image:
"""Utility function to draw bbox on the image"""
width, height = pil_img.size
draw = ImageDraw.Draw(pil_img)
for obj_box in bboxes:
x_min, y_min, x_max, y_max = (
obj_box[0] * width,
obj_box[1] * height,
obj_box[2] * width,
obj_box[3] * height,
)
draw.rectangle(
[int(x_min), int(y_min), int(x_max), int(y_max)],
outline="red",
width=4,
)
return pil_img
@staticmethod
def draw_box_desc(pil_img: Image, bboxes: List[List[float]], prompt: List[str]) -> Image:
"""Utility function to draw bbox on the image"""
color_list = ['red', 'blue', 'yellow', 'purple', 'green', 'black', 'brown', 'orange', 'white', 'gray']
width, height = pil_img.size
draw = ImageDraw.Draw(pil_img)
font_folder = os.path.dirname(os.path.dirname(__file__))
font_path = os.path.join(font_folder, 'Rainbow-Party-2.ttf')
font = ImageFont.truetype(font_path, 30)
for box_id in range(len(bboxes)):
obj_box = bboxes[box_id]
text = prompt[box_id]
fill = 'black'
for color in prompt[box_id].split(' '):
if color in color_list:
fill = color
text = text.split(',')[0]
x_min, y_min, x_max, y_max = (
obj_box[0] * width,
obj_box[1] * height,
obj_box[2] * width,
obj_box[3] * height,
)
draw.rectangle(
[int(x_min), int(y_min), int(x_max), int(y_max)],
outline=fill,
width=4,
)
draw.text((int(x_min), int(y_min)), text, fill=fill, font=font)
return pil_img
@torch.no_grad()
def __call__(
self,
prompt: List[List[str]] = None,
bboxes: List[List[List[float]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
MIGCsteps=20,
NaiveFuserSteps=-1,
ca_scale=None,
ea_scale=None,
sac_scale=None,
aug_phase_with_and=False,
sa_preserve=False,
use_sa_preserve=False,
clear_set=False,
GUI_progress=None
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
token_indices (Union[List[List[List[int]]], List[List[int]]], optional):
The list of the indexes in the prompt to layout. Defaults to None.
bboxes (Union[List[List[List[float]]], List[List[float]]], optional):
The bounding boxes of the indexes to maintain layout in the image. Defaults to None.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
max_guidance_iter (`int`, *optional*, defaults to `10`):
The maximum number of iterations for the layout guidance on attention maps in diffusion mode.
max_guidance_iter_per_step (`int`, *optional*, defaults to `5`):
The maximum number of iterations to run during each time step for layout guidance.
scale_factor (`int`, *optional*, defaults to `50`):
The scale factor used to update the latents during optimization.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
def aug_phase_with_and_function(phase, instance_num):
instance_num = min(instance_num, 7)
copy_phase = [phase] * instance_num
phase = ', and '.join(copy_phase)
return phase
if aug_phase_with_and:
instance_num = len(prompt[0]) - 1
for i in range(1, len(prompt[0])):
prompt[0][i] = aug_phase_with_and_function(prompt[0][i],
instance_num)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
prompt_nums = [0] * len(prompt)
for i, _ in enumerate(prompt):
prompt_nums[i] = len(_)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, cond_prompt_embeds, embeds_pooler = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# print(prompt_embeds.shape) 3 77 768
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
if clear_set:
self.instance_set = set()
self.embedding = {}
now_set = set()
for i in range(len(bboxes[0])):
now_set.add((tuple(bboxes[0][i]), prompt[0][i + 1]))
mask_set = (now_set | self.instance_set) - (now_set & self.instance_set)
self.instance_set = now_set
guidance_mask = np.full((4, height // 8, width // 8), 1.0)
for bbox, _ in mask_set:
w_min = max(0, int(width * bbox[0] // 8) - 5)
w_max = min(width, int(width * bbox[2] // 8) + 5)
h_min = max(0, int(height * bbox[1] // 8) - 5)
h_max = min(height, int(height * bbox[3] // 8) + 5)
guidance_mask[:, h_min:h_max, w_min:w_max] = 0
kernal_size = 5
guidance_mask = uniform_filter(
guidance_mask, axes = (1, 2), size = kernal_size
)
guidance_mask = torch.from_numpy(guidance_mask).to(self.device).unsqueeze(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if GUI_progress is not None:
GUI_progress[0] = int((i + 1) / len(timesteps) * 100)
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
cross_attention_kwargs = {'prompt_nums': prompt_nums,
'bboxes': bboxes,
'ith': i,
'embeds_pooler': embeds_pooler,
'timestep': t,
'height': height,
'width': width,
'MIGCsteps': MIGCsteps,
'NaiveFuserSteps': NaiveFuserSteps,
'ca_scale': ca_scale,
'ea_scale': ea_scale,
'sac_scale': sac_scale,
'sa_preserve': sa_preserve,
'use_sa_preserve': use_sa_preserve}
self.unet.eval()
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
step_output = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
)
latents = step_output.prev_sample
ori_input = latents.detach().clone()
if use_sa_preserve and i in self.embedding:
latents = (
latents * (1.0 - guidance_mask)
+ torch.from_numpy(self.embedding[i]).to(latents.device) * guidance_mask
).float()
if sa_preserve:
self.embedding[i] = ori_input.cpu().numpy()
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=None
) |