File size: 41,505 Bytes
c92c0ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
import glob
import random
import time
from typing import Any, Callable, Dict, List, Optional, Union
# import moxing as mox
import numpy as np
import torch
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.pipelines.stable_diffusion import (
    StableDiffusionPipeline,
    StableDiffusionPipelineOutput,
    StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from PIL import Image, ImageDraw, ImageFont
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import inspect
import os
import math
import torch.nn as nn
import torch.nn.functional as F
# from utils import load_utils
import argparse
import yaml
import cv2
import math
from migc.migc_arch import MIGC, NaiveFuser
from scipy.ndimage import uniform_filter, gaussian_filter

logger = logging.get_logger(__name__)

class AttentionStore:
    @staticmethod
    def get_empty_store():
        return {"down": [], "mid": [], "up": []}

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if is_cross:
            if attn.shape[1] in self.attn_res:
                self.step_store[place_in_unet].append(attn)

        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers:
            self.cur_att_layer = 0
            self.between_steps()

    def between_steps(self):
        self.attention_store = self.step_store
        self.step_store = self.get_empty_store()

    def maps(self, block_type: str):
        return self.attention_store[block_type]

    def reset(self):
        self.cur_att_layer = 0
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self, attn_res=[64*64, 32*32, 16*16, 8*8]):
        """
        Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion
        process
        """
        self.num_att_layers = -1
        self.cur_att_layer = 0
        self.step_store = self.get_empty_store()
        self.attention_store = {}
        self.curr_step_index = 0
        self.attn_res = attn_res


def get_sup_mask(mask_list):
    or_mask = np.zeros_like(mask_list[0])
    for mask in mask_list:
        or_mask += mask
    or_mask[or_mask >= 1] = 1
    sup_mask = 1 - or_mask
    return sup_mask


class MIGCProcessor(nn.Module):
    def __init__(self, config, attnstore, place_in_unet):
        super().__init__()
        self.attnstore = attnstore
        self.place_in_unet = place_in_unet
        self.not_use_migc = config['not_use_migc']
        self.naive_fuser = NaiveFuser()        
        self.embedding = {}
        if not self.not_use_migc:
            self.migc = MIGC(config['C'])

    def __call__(
            self,
            attn: Attention,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            prompt_nums=[],
            bboxes=[],
            ith=None,
            embeds_pooler=None,
            timestep=None,
            height=512,
            width=512,
            MIGCsteps=20,
            NaiveFuserSteps=-1,
            ca_scale=None,
            ea_scale=None,
            sac_scale=None,
            use_sa_preserve=False,
            sa_preserve=False,
    ):
        batch_size, sequence_length, _ = hidden_states.shape
        assert(batch_size == 2, "We currently only implement sampling with batch_size=1, \
               and we will implement sampling with batch_size=N as soon as possible.")
        attention_mask = attn.prepare_attention_mask(
            attention_mask, sequence_length, batch_size
        )
        
        instance_num = len(bboxes[0])

        if ith > MIGCsteps:
            not_use_migc = True
        else:
            not_use_migc = self.not_use_migc
        is_vanilla_cross = (not_use_migc and ith > NaiveFuserSteps)
        if instance_num == 0:
            is_vanilla_cross = True

        is_cross = encoder_hidden_states is not None
        
        ori_hidden_states = hidden_states.clone()

        # Only Need Negative Prompt and Global Prompt.
        if is_cross and is_vanilla_cross:
            encoder_hidden_states = encoder_hidden_states[:2, ...]

        # In this case, we need to use MIGC or naive_fuser, so we copy the hidden_states_cond (instance_num+1) times for QKV
        if is_cross and not is_vanilla_cross:
            hidden_states_uncond = hidden_states[[0], ...]
            hidden_states_cond = hidden_states[[1], ...].repeat(instance_num + 1, 1, 1)
            hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])

        # QKV Operation of Vanilla Self-Attention or Cross-Attention
        query = attn.to_q(hidden_states)
        
        if (
            not is_cross
            and use_sa_preserve
            and timestep.item() in self.embedding
            and self.place_in_unet == "up"
        ):
            hidden_states = torch.cat((hidden_states, torch.from_numpy(self.embedding[timestep.item()]).to(hidden_states.device)), dim=1)

        if not is_cross and sa_preserve and self.place_in_unet == "up":
            self.embedding[timestep.item()] = ori_hidden_states.cpu().numpy()

        encoder_hidden_states = (
            encoder_hidden_states
            if encoder_hidden_states is not None
            else hidden_states
        )
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)
        attention_probs = attn.get_attention_scores(query, key, attention_mask)  # 48 4096 77
        self.attnstore(attention_probs, is_cross, self.place_in_unet)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)
        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)

        ###### Self-Attention Results ######
        if not is_cross:  
            return hidden_states

        ###### Vanilla Cross-Attention Results ######
        if is_vanilla_cross:
            return hidden_states
        
        ###### Cross-Attention with MIGC ######
        assert (not is_vanilla_cross)
        # hidden_states: torch.Size([1+1+instance_num, HW, C]), the first 1 is the uncond ca output, the second 1 is the global ca output.
        hidden_states_uncond = hidden_states[[0], ...]  # torch.Size([1, HW, C])
        cond_ca_output = hidden_states[1: , ...].unsqueeze(0)  # torch.Size([1, 1+instance_num, 5, 64, 1280])
        guidance_masks = []
        in_box = []
        # Construct Instance Guidance Mask
        for bbox in bboxes[0]:  
            guidance_mask = np.zeros((height, width))
            w_min = int(width * bbox[0])
            w_max = int(width * bbox[2])
            h_min = int(height * bbox[1])
            h_max = int(height * bbox[3])
            guidance_mask[h_min: h_max, w_min: w_max] = 1.0
            guidance_masks.append(guidance_mask[None, ...])
            in_box.append([bbox[0], bbox[2], bbox[1], bbox[3]])
        
        # Construct Background Guidance Mask
        sup_mask = get_sup_mask(guidance_masks)
        supplement_mask = torch.from_numpy(sup_mask[None, ...])
        supplement_mask = F.interpolate(supplement_mask, (height//8, width//8), mode='bilinear').float()
        supplement_mask = supplement_mask.to(hidden_states.device)  # (1, 1, H, W)
        
        guidance_masks = np.concatenate(guidance_masks, axis=0)
        guidance_masks = guidance_masks[None, ...]
        guidance_masks = torch.from_numpy(guidance_masks).float().to(cond_ca_output.device)
        guidance_masks = F.interpolate(guidance_masks, (height//8, width//8), mode='bilinear')  # (1, instance_num, H, W)

        in_box = torch.from_numpy(np.array(in_box))[None, ...].float().to(cond_ca_output.device)  # (1, instance_num, 4)

        other_info = {}
        other_info['image_token'] = hidden_states_cond[None, ...]
        other_info['context'] = encoder_hidden_states[1:, ...]
        other_info['box'] = in_box
        other_info['context_pooler'] =embeds_pooler  # (instance_num, 1, 768)
        other_info['supplement_mask'] = supplement_mask
        other_info['attn2'] = None
        other_info['attn'] = attn
        other_info['height'] = height
        other_info['width'] = width
        other_info['ca_scale'] = ca_scale
        other_info['ea_scale'] = ea_scale
        other_info['sac_scale'] = sac_scale

        if not not_use_migc:
            hidden_states_cond, fuser_info = self.migc(cond_ca_output,
                                            guidance_masks,
                                            other_info=other_info,
                                            return_fuser_info=True)
        else:
            hidden_states_cond, fuser_info = self.naive_fuser(cond_ca_output,
                                            guidance_masks,
                                            other_info=other_info,
                                            return_fuser_info=True)
        hidden_states_cond = hidden_states_cond.squeeze(1)

        hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])
        return hidden_states


class StableDiffusionMIGCPipeline(StableDiffusionPipeline):
    def __init__(
            self,
            vae: AutoencoderKL,
            text_encoder: CLIPTextModel,
            tokenizer: CLIPTokenizer,
            unet: UNet2DConditionModel,
            scheduler: KarrasDiffusionSchedulers,
            safety_checker: StableDiffusionSafetyChecker,
            feature_extractor: CLIPImageProcessor,
            image_encoder: CLIPVisionModelWithProjection = None,
            requires_safety_checker: bool = True,
    ):
        # Get the parameter signature of the parent class constructor
        parent_init_signature = inspect.signature(super().__init__)
        parent_init_params = parent_init_signature.parameters
        
        # Dynamically build a parameter dictionary based on the parameters of the parent class constructor
        init_kwargs = {
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "safety_checker": safety_checker,
            "feature_extractor": feature_extractor,
            "requires_safety_checker": requires_safety_checker
        }
        if 'image_encoder' in parent_init_params.items():
            init_kwargs['image_encoder'] = image_encoder
        super().__init__(**init_kwargs)
        
        self.instance_set = set()
        self.embedding = {}

    def _encode_prompt(
            self,
            prompts,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt=None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompts is not None and isinstance(prompts, str):
            batch_size = 1
        elif prompts is not None and isinstance(prompts, list):
            batch_size = len(prompts)
        else:
            batch_size = prompt_embeds.shape[0]

        prompt_embeds_none_flag = (prompt_embeds is None)
        prompt_embeds_list = []
        embeds_pooler_list = []
        for prompt in prompts:
            if prompt_embeds_none_flag:
                # textual inversion: procecss multi-vector tokens if necessary
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

                text_inputs = self.tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=self.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids
                untruncated_ids = self.tokenizer(
                    prompt, padding="longest", return_tensors="pt"
                ).input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[
                    -1
                ] and not torch.equal(text_input_ids, untruncated_ids):
                    removed_text = self.tokenizer.batch_decode(
                        untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
                    )
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                    )

                if (
                        hasattr(self.text_encoder.config, "use_attention_mask")
                        and self.text_encoder.config.use_attention_mask
                ):
                    attention_mask = text_inputs.attention_mask.to(device)
                else:
                    attention_mask = None

                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device),
                    attention_mask=attention_mask,
                )
                embeds_pooler = prompt_embeds.pooler_output
                prompt_embeds = prompt_embeds[0]

            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
            embeds_pooler = embeds_pooler.to(dtype=self.text_encoder.dtype, device=device)

            bs_embed, seq_len, _ = prompt_embeds.shape
            # duplicate text embeddings for each generation per prompt, using mps friendly method
            prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
            embeds_pooler = embeds_pooler.repeat(1, num_images_per_prompt)
            prompt_embeds = prompt_embeds.view(
                bs_embed * num_images_per_prompt, seq_len, -1
            )
            embeds_pooler = embeds_pooler.view(
                bs_embed * num_images_per_prompt, -1
            )
            prompt_embeds_list.append(prompt_embeds)
            embeds_pooler_list.append(embeds_pooler)
        prompt_embeds = torch.cat(prompt_embeds_list, dim=0)
        embeds_pooler = torch.cat(embeds_pooler_list, dim=0)
        # negative_prompt_embeds: (prompt_nums[0]+prompt_nums[1]+...prompt_nums[n], token_num, token_channel), <class 'torch.Tensor'>

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                negative_prompt = "worst quality, low quality, bad anatomy"
            uncond_tokens = [negative_prompt] * batch_size

            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if (
                    hasattr(self.text_encoder.config, "use_attention_mask")
                    and self.text_encoder.config.use_attention_mask
            ):
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=self.text_encoder.dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_images_per_prompt, 1
            )
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            # negative_prompt_embeds: (len(prompt_nums), token_num, token_channel), <class 'torch.Tensor'>

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            final_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return final_prompt_embeds, prompt_embeds, embeds_pooler[:, None, :]

    def check_inputs(
            self,
            prompt,
            token_indices,
            bboxes,
            height,
            width,
            callback_steps,
            negative_prompt=None,
            prompt_embeds=None,
            negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if (callback_steps is None) or (
                callback_steps is not None
                and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
                not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if token_indices is not None:
            if isinstance(token_indices, list):
                if isinstance(token_indices[0], list):
                    if isinstance(token_indices[0][0], list):
                        token_indices_batch_size = len(token_indices)
                    elif isinstance(token_indices[0][0], int):
                        token_indices_batch_size = 1
                    else:
                        raise TypeError(
                            "`token_indices` must be a list of lists of integers or a list of integers."
                        )
                else:
                    raise TypeError(
                        "`token_indices` must be a list of lists of integers or a list of integers."
                    )
            else:
                raise TypeError(
                    "`token_indices` must be a list of lists of integers or a list of integers."
                )

        if bboxes is not None:
            if isinstance(bboxes, list):
                if isinstance(bboxes[0], list):
                    if (
                            isinstance(bboxes[0][0], list)
                            and len(bboxes[0][0]) == 4
                            and all(isinstance(x, float) for x in bboxes[0][0])
                    ):
                        bboxes_batch_size = len(bboxes)
                    elif (
                            isinstance(bboxes[0], list)
                            and len(bboxes[0]) == 4
                            and all(isinstance(x, float) for x in bboxes[0])
                    ):
                        bboxes_batch_size = 1
                    else:
                        print(isinstance(bboxes[0], list), len(bboxes[0]))
                        raise TypeError(
                            "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
                        )
                else:
                    print(isinstance(bboxes[0], list), len(bboxes[0]))
                    raise TypeError(
                        "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
                    )
            else:
                print(isinstance(bboxes[0], list), len(bboxes[0]))
                raise TypeError(
                    "`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
                )

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if token_indices_batch_size != prompt_batch_size:
            raise ValueError(
                f"token indices batch size must be same as prompt batch size. token indices batch size: {token_indices_batch_size}, prompt batch size: {prompt_batch_size}"
            )

        if bboxes_batch_size != prompt_batch_size:
            raise ValueError(
                f"bbox batch size must be same as prompt batch size. bbox batch size: {bboxes_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def get_indices(self, prompt: str) -> Dict[str, int]:
        """Utility function to list the indices of the tokens you wish to alte"""
        ids = self.tokenizer(prompt).input_ids
        indices = {
            i: tok
            for tok, i in zip(
                self.tokenizer.convert_ids_to_tokens(ids), range(len(ids))
            )
        }
        return indices

    @staticmethod
    def draw_box(pil_img: Image, bboxes: List[List[float]]) -> Image:
        """Utility function to draw bbox on the image"""
        width, height = pil_img.size
        draw = ImageDraw.Draw(pil_img)

        for obj_box in bboxes:
            x_min, y_min, x_max, y_max = (
                obj_box[0] * width,
                obj_box[1] * height,
                obj_box[2] * width,
                obj_box[3] * height,
            )
            draw.rectangle(
                [int(x_min), int(y_min), int(x_max), int(y_max)],
                outline="red",
                width=4,
            )

        return pil_img


    @staticmethod
    def draw_box_desc(pil_img: Image, bboxes: List[List[float]], prompt: List[str]) -> Image:
        """Utility function to draw bbox on the image"""
        color_list = ['red', 'blue', 'yellow', 'purple', 'green', 'black', 'brown', 'orange', 'white', 'gray']
        width, height = pil_img.size
        draw = ImageDraw.Draw(pil_img)
        font_folder = os.path.dirname(os.path.dirname(__file__))
        font_path = os.path.join(font_folder, 'Rainbow-Party-2.ttf')
        font = ImageFont.truetype(font_path, 30)

        for box_id in range(len(bboxes)):
            obj_box = bboxes[box_id]
            text = prompt[box_id]
            fill = 'black'
            for color in prompt[box_id].split(' '):
                if color in color_list:
                    fill = color
            text = text.split(',')[0]
            x_min, y_min, x_max, y_max = (
                obj_box[0] * width,
                obj_box[1] * height,
                obj_box[2] * width,
                obj_box[3] * height,
            )
            draw.rectangle(
                [int(x_min), int(y_min), int(x_max), int(y_max)],
                outline=fill,
                width=4,
            )
            draw.text((int(x_min), int(y_min)), text, fill=fill, font=font)

        return pil_img


    @torch.no_grad()
    def __call__(
            self,
            prompt: List[List[str]] = None,
            bboxes: List[List[List[float]]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: int = 1,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            MIGCsteps=20,
            NaiveFuserSteps=-1,
            ca_scale=None,
            ea_scale=None,
            sac_scale=None,
            aug_phase_with_and=False,
            sa_preserve=False,
            use_sa_preserve=False,
            clear_set=False,
            GUI_progress=None
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            token_indices (Union[List[List[List[int]]], List[List[int]]], optional):
                The list of the indexes in the prompt to layout. Defaults to None.
            bboxes (Union[List[List[List[float]]], List[List[float]]], optional):
                The bounding boxes of the indexes to maintain layout in the image. Defaults to None.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            max_guidance_iter (`int`, *optional*, defaults to `10`):
                The maximum number of iterations for the layout guidance on attention maps in diffusion mode.
            max_guidance_iter_per_step (`int`, *optional*, defaults to `5`):
                The maximum number of iterations to run during each time step for layout guidance.
            scale_factor (`int`, *optional*, defaults to `50`):
                The scale factor used to update the latents during optimization.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        def aug_phase_with_and_function(phase, instance_num):
            instance_num = min(instance_num, 7)
            copy_phase = [phase] * instance_num
            phase = ', and '.join(copy_phase)
            return phase

        if aug_phase_with_and:
            instance_num = len(prompt[0]) - 1
            for i in range(1, len(prompt[0])):
                prompt[0][i] = aug_phase_with_and_function(prompt[0][i],
                                                            instance_num)
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        prompt_nums = [0] * len(prompt)
        for i, _ in enumerate(prompt):
            prompt_nums[i] = len(_)

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, cond_prompt_embeds, embeds_pooler = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )
        # print(prompt_embeds.shape)  3 77 768

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        
        if clear_set:
            self.instance_set = set()
            self.embedding = {}

        now_set = set()
        for i in range(len(bboxes[0])):
            now_set.add((tuple(bboxes[0][i]), prompt[0][i + 1]))

        mask_set = (now_set | self.instance_set) - (now_set & self.instance_set)
        self.instance_set = now_set

        guidance_mask = np.full((4, height // 8, width // 8), 1.0)
                
        for bbox, _ in mask_set:
            w_min = max(0, int(width * bbox[0] // 8) - 5)
            w_max = min(width, int(width * bbox[2] // 8) + 5)
            h_min = max(0, int(height * bbox[1] // 8) - 5)
            h_max = min(height, int(height * bbox[3] // 8) + 5)
            guidance_mask[:, h_min:h_max, w_min:w_max] = 0
        
        kernal_size = 5
        guidance_mask = uniform_filter(
            guidance_mask, axes = (1, 2), size = kernal_size
        )
        
        guidance_mask = torch.from_numpy(guidance_mask).to(self.device).unsqueeze(0)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if GUI_progress is not None:
                    GUI_progress[0] = int((i + 1) / len(timesteps) * 100)
                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                # predict the noise residual
                cross_attention_kwargs = {'prompt_nums': prompt_nums,
                                          'bboxes': bboxes,
                                          'ith': i,
                                          'embeds_pooler': embeds_pooler,
                                          'timestep': t,
                                          'height': height,
                                          'width': width,
                                          'MIGCsteps': MIGCsteps,
                                          'NaiveFuserSteps': NaiveFuserSteps,
                                          'ca_scale': ca_scale,
                                          'ea_scale': ea_scale,
                                          'sac_scale': sac_scale,
                                          'sa_preserve': sa_preserve,
                                          'use_sa_preserve': use_sa_preserve}
                
                self.unet.eval()
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                    )

                step_output = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                )
                latents = step_output.prev_sample

                ori_input = latents.detach().clone()
                if use_sa_preserve and i in self.embedding:
                    latents = (
                            latents * (1.0 - guidance_mask)
                            + torch.from_numpy(self.embedding[i]).to(latents.device) * guidance_mask
                        ).float()
                
                if sa_preserve:
                    self.embedding[i] = ori_input.cpu().numpy()
        
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                        (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == "latent":
            image = latents
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, None)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=None
        )