Control_Ability_Arena / model /models /replicate_api_models.py
Bbmyy
first commit
c92c0ec
raw
history blame
9.73 kB
import replicate
from PIL import Image
import requests
import io
import os
import base64
Replicate_MODEl_NAME_MAP = {
"SDXL": "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
"SD-v3.0": "stability-ai/stable-diffusion-3",
"SD-v2.1": "stability-ai/stable-diffusion:ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e4",
"SD-v1.5": "stability-ai/stable-diffusion:b3d14e1cd1f9470bbb0bb68cac48e5f483e5be309551992cc33dc30654a82bb7",
"SDXL-Lightning": "bytedance/sdxl-lightning-4step:5f24084160c9089501c1b3545d9be3c27883ae2239b6f412990e82d4a6210f8f",
"Kandinsky-v2.0": "ai-forever/kandinsky-2:3c6374e7a9a17e01afe306a5218cc67de55b19ea536466d6ea2602cfecea40a9",
"Kandinsky-v2.2": "ai-forever/kandinsky-2.2:ad9d7879fbffa2874e1d909d1d37d9bc682889cc65b31f7bb00d2362619f194a",
"Proteus-v0.2": "lucataco/proteus-v0.2:06775cd262843edbde5abab958abdbb65a0a6b58ca301c9fd78fa55c775fc019",
"Playground-v2.0": "playgroundai/playground-v2-1024px-aesthetic:42fe626e41cc811eaf02c94b892774839268ce1994ea778eba97103fe1ef51b8",
"Playground-v2.5": "playgroundai/playground-v2.5-1024px-aesthetic:a45f82a1382bed5c7aeb861dac7c7d191b0fdf74d8d57c4a0e6ed7d4d0bf7d24",
"Dreamshaper-xl-turbo": "lucataco/dreamshaper-xl-turbo:0a1710e0187b01a255302738ca0158ff02a22f4638679533e111082f9dd1b615",
"SDXL-Deepcache": "lucataco/sdxl-deepcache:eaf678fb34006669e9a3c6dd5971e2279bf20ee0adeced464d7b6d95de16dc93",
"Openjourney-v4": "prompthero/openjourney:ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969",
"LCM-v1.5": "fofr/latent-consistency-model:683d19dc312f7a9f0428b04429a9ccefd28dbf7785fef083ad5cf991b65f406f",
"Realvisxl-v3.0": "fofr/realvisxl-v3:33279060bbbb8858700eb2146350a98d96ef334fcf817f37eb05915e1534aa1c",
"Realvisxl-v2.0": "lucataco/realvisxl-v2.0:7d6a2f9c4754477b12c14ed2a58f89bb85128edcdd581d24ce58b6926029de08",
"Pixart-Sigma": "cjwbw/pixart-sigma:5a54352c99d9fef467986bc8f3a20205e8712cbd3df1cbae4975d6254c902de1",
"SSD-1b": "lucataco/ssd-1b:b19e3639452c59ce8295b82aba70a231404cb062f2eb580ea894b31e8ce5bbb6",
"Open-Dalle-v1.1": "lucataco/open-dalle-v1.1:1c7d4c8dec39c7306df7794b28419078cb9d18b9213ab1c21fdc46a1deca0144",
"Deepfloyd-IF": "andreasjansson/deepfloyd-if:fb84d659df149f4515c351e394d22222a94144aa1403870c36025c8b28846c8d",
"Zeroscope-v2-xl": "anotherjesse/zeroscope-v2-xl:9f747673945c62801b13b84701c783929c0ee784e4748ec062204894dda1a351",
# "Damo-Text-to-Video": "cjwbw/damo-text-to-video:1e205ea73084bd17a0a3b43396e49ba0d6bc2e754e9283b2df49fad2dcf95755",
"Animate-Diff": "lucataco/animate-diff:beecf59c4aee8d81bf04f0381033dfa10dc16e845b4ae00d281e2fa377e48a9f",
"OpenSora": "camenduru/open-sora:8099e5722ba3d5f408cd3e696e6df058137056268939337a3fbe3912e86e72ad",
"LaVie": "cjwbw/lavie:0bca850c4928b6c30052541fa002f24cbb4b677259c461dd041d271ba9d3c517",
"VideoCrafter2": "lucataco/video-crafter:7757c5775e962c618053e7df4343052a21075676d6234e8ede5fa67c9e43bce0",
"Stable-Video-Diffusion": "sunfjun/stable-video-diffusion:d68b6e09eedbac7a49e3d8644999d93579c386a083768235cabca88796d70d82",
"FLUX.1-schnell": "black-forest-labs/flux-schnell",
"FLUX.1-pro": "black-forest-labs/flux-pro",
"FLUX.1-dev": "black-forest-labs/flux-dev",
"FLUX-1.1-pro": "black-forest-labs/flux-1.1-pro",
"SD-v3.5-large": "stability-ai/stable-diffusion-3.5-large",
"SD-v3.5-large-turbo": "stability-ai/stable-diffusion-3.5-large-turbo",
}
class ReplicateModel():
def __init__(self, model_name, model_type):
self.model_name = model_name
self.model_type = model_type
def __call__(self, *args, **kwargs):
if self.model_type == "text2image":
assert "prompt" in kwargs, "prompt is required for text2image model"
output = replicate.run(
f"{Replicate_MODEl_NAME_MAP[self.model_name]}",
input={
"width": 512,
"height": 512,
"prompt": kwargs["prompt"]
},
)
if 'Openjourney' in self.model_name:
for item in output:
result_url = item
break
elif isinstance(output, list):
result_url = output[0]
else:
result_url = output
print(self.model_name, result_url)
response = requests.get(result_url)
result = Image.open(io.BytesIO(response.content))
return result
elif self.model_type == "text2video":
assert "prompt" in kwargs, "prompt is required for text2image model"
if self.model_name == "Zeroscope-v2-xl":
input = {
"fps": 24,
"width": 512,
"height": 512,
"prompt": kwargs["prompt"],
"guidance_scale": 17.5,
# "negative_prompt": "very blue, dust, noisy, washed out, ugly, distorted, broken",
"num_frames": 48,
}
elif self.model_name == "Damo-Text-to-Video":
input={
"fps": 8,
"prompt": kwargs["prompt"],
"num_frames": 16,
"num_inference_steps": 50
}
elif self.model_name == "Animate-Diff":
input={
"path": "toonyou_beta3.safetensors",
"seed": 255224557,
"steps": 25,
"prompt": kwargs["prompt"],
"n_prompt": "badhandv4, easynegative, ng_deepnegative_v1_75t, verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
"motion_module": "mm_sd_v14",
"guidance_scale": 7.5
}
elif self.model_name == "OpenSora":
input={
"seed": 1234,
"prompt": kwargs["prompt"],
}
elif self.model_name == "LaVie":
input={
"width": 512,
"height": 512,
"prompt": kwargs["prompt"],
"quality": 9,
"video_fps": 8,
"interpolation": False,
"sample_method": "ddpm",
"guidance_scale": 7,
"super_resolution": False,
"num_inference_steps": 50
}
elif self.model_name == "VideoCrafter2":
input={
"fps": 24,
"seed": 64045,
"steps": 40,
"width": 512,
"height": 512,
"prompt": kwargs["prompt"],
}
elif self.model_name == "Stable-Video-Diffusion":
text2image_name = "SD-v2.1"
output = replicate.run(
f"{Replicate_MODEl_NAME_MAP[text2image_name]}",
input={
"width": 512,
"height": 512,
"prompt": kwargs["prompt"]
},
)
if isinstance(output, list):
image_url = output[0]
else:
image_url = output
print(image_url)
input={
"cond_aug": 0.02,
"decoding_t": 14,
"input_image": "{}".format(image_url),
"video_length": "14_frames_with_svd",
"sizing_strategy": "maintain_aspect_ratio",
"motion_bucket_id": 127,
"frames_per_second": 6
}
output = replicate.run(
f"{Replicate_MODEl_NAME_MAP[self.model_name]}",
input=input,
)
if isinstance(output, list):
result_url = output[0]
else:
result_url = output
print(self.model_name)
print(result_url)
# response = requests.get(result_url)
# result = Image.open(io.BytesIO(response.content))
# for event in handler.iter_events(with_logs=True):
# if isinstance(event, fal_client.InProgress):
# print('Request in progress')
# print(event.logs)
# result = handler.get()
# print("result video: ====")
# print(result)
# result_url = result['video']['url']
# return result_url
return result_url
else:
raise ValueError("model_type must be text2image or image2image")
def load_replicate_model(model_name, model_type):
return ReplicateModel(model_name, model_type)
if __name__ == "__main__":
model_name = 'replicate_zeroscope-v2-xl_text2video'
model_source, model_name, model_type = model_name.split("_")
pipe = load_replicate_model(model_name, model_type)
prompt = "Clown fish swimming in a coral reef, beautiful, 8k, perfect, award winning, national geographic"
result = pipe(prompt=prompt)