import torch import torch.nn as nn import torch.nn.functional as F import random import math from inspect import isfunction from einops import rearrange, repeat from torch import nn, einsum def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None, return_attn=False, need_softmax=True, guidance_mask=None, forward_layout_guidance=False): h = self.heads b = x.shape[0] q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if forward_layout_guidance: # sim: (B * phase_num * h, HW, 77), b = B * phase_num # guidance_mask: (B, phase_num, 64, 64) HW = sim.shape[1] H = W = int(math.sqrt(HW)) guidance_mask = F.interpolate(guidance_mask, size=(H, W), mode='nearest') # (B, phase_num, H, W) sim = sim.view(b, h, HW, 77) guidance_mask = guidance_mask.view(b, 1, HW, 1) guidance_mask[guidance_mask == 1] = 5.0 guidance_mask[guidance_mask == 0] = 0.1 sim[:, :, :, 1:] = sim[:, :, :, 1:] * guidance_mask sim = sim.view(b * h, HW, 77) if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) if need_softmax: attn = sim.softmax(dim=-1) else: attn = sim out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) if return_attn: attn = attn.view(b, h, attn.shape[-2], attn.shape[-1]) return self.to_out(out), attn else: return self.to_out(out) class LayoutAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., use_lora=False): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.use_lora = use_lora self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None, return_attn=False, need_softmax=True, guidance_mask=None): h = self.heads b = x.shape[0] q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale _, phase_num, H, W = guidance_mask.shape HW = H * W guidance_mask_o = guidance_mask.view(b * phase_num, HW, 1) guidance_mask_t = guidance_mask.view(b * phase_num, 1, HW) guidance_mask_sim = torch.bmm(guidance_mask_o, guidance_mask_t) # (B * phase_num, HW, HW) guidance_mask_sim = guidance_mask_sim.view(b, phase_num, HW, HW).sum(dim=1) guidance_mask_sim[guidance_mask_sim > 1] = 1 # (B, HW, HW) guidance_mask_sim = guidance_mask_sim.view(b, 1, HW, HW) guidance_mask_sim = guidance_mask_sim.repeat(1, self.heads, 1, 1) guidance_mask_sim = guidance_mask_sim.view(b * self.heads, HW, HW) # (B * head, HW, HW) sim[:, :, :HW][guidance_mask_sim == 0] = -torch.finfo(sim.dtype).max if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of if need_softmax: attn = sim.softmax(dim=-1) else: attn = sim out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) if return_attn: attn = attn.view(b, h, attn.shape[-2], attn.shape[-1]) return self.to_out(out), attn else: return self.to_out(out) class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False): super(BasicConv, self).__init__() self.out_channels = out_planes self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None self.relu = nn.ReLU() if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class ChannelGate(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(ChannelGate, self).__init__() self.gate_channels = gate_channels self.mlp = nn.Sequential( Flatten(), nn.Linear(gate_channels, gate_channels // reduction_ratio), nn.ReLU(), nn.Linear(gate_channels // reduction_ratio, gate_channels) ) self.pool_types = pool_types def forward(self, x): channel_att_sum = None for pool_type in self.pool_types: if pool_type=='avg': avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) channel_att_raw = self.mlp( avg_pool ) elif pool_type=='max': max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) channel_att_raw = self.mlp( max_pool ) elif pool_type=='lp': lp_pool = F.lp_pool2d( x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) channel_att_raw = self.mlp( lp_pool ) elif pool_type=='lse': # LSE pool only lse_pool = logsumexp_2d(x) channel_att_raw = self.mlp( lse_pool ) if channel_att_sum is None: channel_att_sum = channel_att_raw else: channel_att_sum = channel_att_sum + channel_att_raw scale = F.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x) return x * scale def logsumexp_2d(tensor): tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1) s, _ = torch.max(tensor_flatten, dim=2, keepdim=True) outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log() return outputs class ChannelPool(nn.Module): def forward(self, x): return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 ) class SpatialGate(nn.Module): def __init__(self): super(SpatialGate, self).__init__() kernel_size = 7 self.compress = ChannelPool() self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False) def forward(self, x): x_compress = self.compress(x) x_out = self.spatial(x_compress) scale = F.sigmoid(x_out) # broadcasting return x * scale class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False): super(CBAM, self).__init__() self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types) self.no_spatial=no_spatial if not no_spatial: self.SpatialGate = SpatialGate() def forward(self, x): x_out = self.ChannelGate(x) if not self.no_spatial: x_out = self.SpatialGate(x_out) return x_out