eliujl commited on
Commit
596804b
·
1 Parent(s): 6c41a5e

added prompt template handling

Browse files
Files changed (1) hide show
  1. app.py +23 -17
app.py CHANGED
@@ -189,27 +189,36 @@ def use_local_llm(r_llm, local_llm_path):
189
  return llm
190
 
191
 
192
- def setup_prompt():
193
-
194
- template = """Answer the question in your own words as truthfully as possible from the context given to you.
 
 
195
  Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
196
  Think step by step and do not jump to conclusion during your reasoning at the beginning.
197
  Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
198
  so try your best to understand the question based on the context and chat history.
199
  If questions are asked where there is no relevant context available,
200
  respond using out-of-context knowledge with
201
- "This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context."
202
-
203
  Context: {context}
204
 
205
- {chat_history}
206
  User: {question}
207
- Bot:"""
208
-
209
- prompt = PromptTemplate(
210
- input_variables=["context", "chat_history", "question"], template=template
211
- )
212
- return prompt
 
 
 
 
 
 
 
213
 
214
  def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path):
215
  if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY:
@@ -325,18 +334,15 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
325
  # number of sources (split-documents when ingesting files); default is 4
326
  k = min([20, n_texts])
327
  retriever = setup_retriever(docsearch, k)
328
-
329
- #prompt = setup_prompt()
330
-
331
  memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
332
-
333
  CRqa = ConversationalRetrievalChain.from_llm(
334
  llm,
335
  chain_type="stuff",
336
  retriever=retriever,
337
  memory=memory,
338
  return_source_documents=True,
339
- #combine_docs_chain_kwargs={'prompt': prompt},
340
  )
341
 
342
  st.title(':blue[Chatbot]')
 
189
  return llm
190
 
191
 
192
+ def setup_prompt(r_llm):
193
+ B_INST, E_INST = "[INST]", "[/INST]"
194
+ B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n"
195
+ B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> "
196
+ system_prompt = """Answer the question in your own words as truthfully as possible from the context given to you.
197
  Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
198
  Think step by step and do not jump to conclusion during your reasoning at the beginning.
199
  Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
200
  so try your best to understand the question based on the context and chat history.
201
  If questions are asked where there is no relevant context available,
202
  respond using out-of-context knowledge with
203
+ "This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """
204
+ instruction = """
205
  Context: {context}
206
 
207
+ Chat history: {chat_history}
208
  User: {question}
209
+ Bot: answer """
210
+ if r_llm == gpt3p5 or r_llm == gpt4:
211
+ template = system_prompt + instruction
212
+ else:
213
+ entry = local_model_names.index(r_llm)
214
+ if local_model_tuples[entry][4] == 'llama':
215
+ template = B_INST + B_SYS_LLAMA + system_prompt + E_SYS_LLAMA + instruction + E_INST
216
+ else:
217
+ template = B_SYS_MIS + B_INST + system_prompt + E_INST + E_SYS_MIS + B_INST + instruction + E_INST
218
+ prompt = PromptTemplate(
219
+ input_variables=["context", "chat_history", "question"], template=template
220
+ )
221
+ return prompt
222
 
223
  def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path):
224
  if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY:
 
334
  # number of sources (split-documents when ingesting files); default is 4
335
  k = min([20, n_texts])
336
  retriever = setup_retriever(docsearch, k)
337
+ prompt = setup_prompt(r_llm)
 
 
338
  memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
 
339
  CRqa = ConversationalRetrievalChain.from_llm(
340
  llm,
341
  chain_type="stuff",
342
  retriever=retriever,
343
  memory=memory,
344
  return_source_documents=True,
345
+ combine_docs_chain_kwargs={'prompt': prompt},
346
  )
347
 
348
  st.title(':blue[Chatbot]')