Spaces:
Sleeping
Sleeping
eliujl
commited on
Commit
·
891293a
1
Parent(s):
11c3099
Added 'Chat' and 'Task' usages
Browse filesAdded 'Chat' and 'Task' usages. 'Chat' does not load/ingest any file, but keeps chat history.
'Task' loads file(s) and performs user-defined task on each chunk of the file(s), such as proofreading or translation.
app.py
CHANGED
@@ -9,7 +9,8 @@ from langchain.embeddings.openai import OpenAIEmbeddings
|
|
9 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from langchain.vectorstores import Pinecone, Chroma
|
12 |
-
from langchain.chains import ConversationalRetrievalChain
|
|
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
from langchain.memory import ConversationBufferMemory
|
15 |
import os
|
@@ -196,12 +197,12 @@ def use_local_llm(r_llm, local_llm_path):
|
|
196 |
return llm
|
197 |
|
198 |
|
199 |
-
def setup_prompt(r_llm):
|
200 |
B_INST, E_INST = "[INST]", "[/INST]"
|
201 |
B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
202 |
B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> "
|
203 |
B_SYS_MIXTRAL, E_SYS_MIXTRAL = "<s>[INST]", "[/INST]</s>[INST]"
|
204 |
-
|
205 |
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
|
206 |
Think step by step and do not jump to conclusion during your reasoning at the beginning.
|
207 |
Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
|
@@ -209,12 +210,35 @@ def setup_prompt(r_llm):
|
|
209 |
If questions are asked where there is no relevant context available,
|
210 |
respond using out-of-context knowledge with
|
211 |
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
if r_llm == gpt3p5 or r_llm == gpt4:
|
219 |
template = system_prompt + instruction
|
220 |
else:
|
@@ -228,9 +252,18 @@ def setup_prompt(r_llm):
|
|
228 |
else:
|
229 |
# Handle other models or raise an exception
|
230 |
pass
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
return prompt
|
235 |
|
236 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path):
|
@@ -273,49 +306,59 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
273 |
reply = ''
|
274 |
source = ''
|
275 |
LLMs = [gpt3p5, gpt4] + local_model_names
|
|
|
276 |
local_llm_path = './models/'
|
277 |
user_llm_path = ''
|
278 |
# Get user input of whether to use Pinecone or not
|
279 |
col1, col2, col3 = st.columns([1, 1, 1])
|
280 |
# create the radio buttons and text input fields
|
281 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
r_llm = st.radio(label='LLM:', options=LLMs)
|
283 |
if r_llm == gpt3p5 or r_llm == gpt4:
|
284 |
use_openai = True
|
285 |
else:
|
286 |
-
use_openai = False
|
287 |
-
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
|
288 |
-
r_ingest = st.radio(
|
289 |
-
'Ingest file(s)?', ('Yes', 'No'))
|
290 |
-
if r_pinecone == 'Pinecone (online)':
|
291 |
-
use_pinecone = True
|
292 |
-
else:
|
293 |
-
use_pinecone = False
|
294 |
-
with col2:
|
295 |
-
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
296 |
-
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
297 |
if use_openai == True:
|
298 |
OPENAI_API_KEY = st.text_input(
|
299 |
"OpenAI API key:", type="password")
|
300 |
else:
|
301 |
OPENAI_API_KEY = ''
|
302 |
-
if use_pinecone == True:
|
303 |
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
|
304 |
-
|
305 |
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
|
|
|
|
|
306 |
with col3:
|
307 |
-
if
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
315 |
else:
|
316 |
-
|
317 |
-
'''Chroma collection name of 3-63 characters:''')
|
318 |
-
persist_directory = "./vectorstore"
|
319 |
if use_openai == False:
|
320 |
user_llm_path = st.text_input(
|
321 |
"Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:",
|
@@ -323,45 +366,61 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
323 |
if 'default' in user_llm_path:
|
324 |
user_llm_path = local_llm_path
|
325 |
|
326 |
-
if ( (pinecone_index_name or chroma_collection_name)
|
327 |
and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ):
|
328 |
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path)
|
329 |
#if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm:
|
330 |
-
session_name = pinecone_index_name + chroma_collection_name
|
331 |
-
if
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
docsearch_ready = True
|
340 |
else:
|
341 |
-
st.write(
|
342 |
-
'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.')
|
343 |
-
docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name,
|
344 |
-
embeddings, chroma_collection_name, persist_directory)
|
345 |
docsearch_ready = True
|
346 |
if docsearch_ready:
|
347 |
-
|
348 |
-
|
349 |
-
retriever = setup_retriever(docsearch, k)
|
350 |
-
prompt = setup_prompt(r_llm)
|
351 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
st.title(':blue[Chatbot]')
|
362 |
# Get user input
|
363 |
query = st.text_area('Enter your question:', height=10,
|
364 |
-
placeholder='''Summarize the context.
|
365 |
\nAfter typing your question, click on SUBMIT to send it to the bot.''')
|
366 |
submitted = st.button('SUBMIT')
|
367 |
|
@@ -373,8 +432,16 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
373 |
# Generate a reply based on the user input and chat history
|
374 |
chat_history = [(user, bot)
|
375 |
for user, bot in chat_history]
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
# Update the chat history with the user input and system response
|
379 |
chat_history.append(('User', query))
|
380 |
chat_history.append(('Bot', reply))
|
@@ -389,7 +456,7 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
389 |
chat_history_str1 = '<br>'.join([f'<span class=\"my_title\">{x[0]}:</span> {x[1]}' for x in latest_chats])
|
390 |
st.markdown(f'<div class=\"chat-record\">{chat_history_str1}</div>', unsafe_allow_html=True)
|
391 |
|
392 |
-
if reply and source:
|
393 |
# Display sources
|
394 |
for i, source_i in enumerate(source):
|
395 |
if i < k_sources:
|
|
|
9 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from langchain.vectorstores import Pinecone, Chroma
|
12 |
+
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
13 |
+
from langchain.chains.question_answering import load_qa_chain
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
import os
|
|
|
197 |
return llm
|
198 |
|
199 |
|
200 |
+
def setup_prompt(r_llm, usage):
|
201 |
B_INST, E_INST = "[INST]", "[/INST]"
|
202 |
B_SYS_LLAMA, E_SYS_LLAMA = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
203 |
B_SYS_MIS, E_SYS_MIS = "<s> ", "</s> "
|
204 |
B_SYS_MIXTRAL, E_SYS_MIXTRAL = "<s>[INST]", "[/INST]</s>[INST]"
|
205 |
+
system_prompt_rag = """Answer the question in your own words as truthfully as possible from the context given to you.
|
206 |
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
|
207 |
Think step by step and do not jump to conclusion during your reasoning at the beginning.
|
208 |
Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
|
|
|
210 |
If questions are asked where there is no relevant context available,
|
211 |
respond using out-of-context knowledge with
|
212 |
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." """
|
213 |
+
system_prompt_chat = """Answer the question in your own words.
|
214 |
+
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
|
215 |
+
Think step by step and do not jump to conclusion during your reasoning at the beginning.
|
216 |
+
"""
|
217 |
+
system_prompt_task = """You will be given a task, and you are an expert in that task.
|
218 |
+
Perform the task for the given context, and output the result. Do not include extra descriptions. Just output the desired result defined by the task.
|
219 |
+
Example: You are a professional translator and are given a translation task. Then you translate the text in the context and output only the translated text.
|
220 |
+
Example: You are a professional proofreader and are given a proofreading task. Then you proofread the text in the context and output only the translated text.
|
221 |
+
"""
|
222 |
+
if usage == 'RAG':
|
223 |
+
system_prompt = system_prompt_rag
|
224 |
+
instruction = """
|
225 |
+
Context: {context}
|
226 |
+
|
227 |
+
Chat history: {chat_history}
|
228 |
+
User: {question}
|
229 |
+
Bot: answer """
|
230 |
+
elif usage == 'Chat':
|
231 |
+
system_prompt = system_prompt_chat
|
232 |
+
instruction = """
|
233 |
+
Chat history: {chat_history}
|
234 |
+
User: {question}
|
235 |
+
Bot: answer """
|
236 |
+
elif usage == 'Task':
|
237 |
+
system_prompt = system_prompt_task
|
238 |
+
instruction = """
|
239 |
+
Context: {context}
|
240 |
+
User: {question}
|
241 |
+
Bot: answer """
|
242 |
if r_llm == gpt3p5 or r_llm == gpt4:
|
243 |
template = system_prompt + instruction
|
244 |
else:
|
|
|
252 |
else:
|
253 |
# Handle other models or raise an exception
|
254 |
pass
|
255 |
+
if usage == 'RAG':
|
256 |
+
prompt = PromptTemplate(
|
257 |
+
input_variables=["context", "chat_history", "question"], template=template
|
258 |
+
)
|
259 |
+
elif usage == 'Chat':
|
260 |
+
prompt = PromptTemplate(
|
261 |
+
input_variables=["chat_history", "question"], template=template
|
262 |
+
)
|
263 |
+
elif usage == 'Task':
|
264 |
+
prompt = PromptTemplate(
|
265 |
+
input_variables=["context", "question"], template=template
|
266 |
+
)
|
267 |
return prompt
|
268 |
|
269 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path):
|
|
|
306 |
reply = ''
|
307 |
source = ''
|
308 |
LLMs = [gpt3p5, gpt4] + local_model_names
|
309 |
+
usage = 'RAG'
|
310 |
local_llm_path = './models/'
|
311 |
user_llm_path = ''
|
312 |
# Get user input of whether to use Pinecone or not
|
313 |
col1, col2, col3 = st.columns([1, 1, 1])
|
314 |
# create the radio buttons and text input fields
|
315 |
with col1:
|
316 |
+
usage = st.radio('Usage: RAG for ingested files, chat (no files), or task (for all ingested texts)', ('RAG', 'Chat', 'Task'))
|
317 |
+
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
318 |
+
if usage == 'RAG':
|
319 |
+
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
|
320 |
+
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
321 |
+
r_ingest = st.radio('Ingest file(s)?', ('Yes', 'No'))
|
322 |
+
if r_pinecone == 'Pinecone (online)':
|
323 |
+
use_pinecone = True
|
324 |
+
else:
|
325 |
+
use_pinecone = False
|
326 |
+
if usage == 'Task':
|
327 |
+
r_ingest = 'Yes'
|
328 |
+
|
329 |
+
with col2:
|
330 |
r_llm = st.radio(label='LLM:', options=LLMs)
|
331 |
if r_llm == gpt3p5 or r_llm == gpt4:
|
332 |
use_openai = True
|
333 |
else:
|
334 |
+
use_openai = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
if use_openai == True:
|
336 |
OPENAI_API_KEY = st.text_input(
|
337 |
"OpenAI API key:", type="password")
|
338 |
else:
|
339 |
OPENAI_API_KEY = ''
|
340 |
+
if usage == 'RAG' and use_pinecone == True:
|
341 |
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
|
342 |
+
elif usage == 'RAG' and use_pinecone == False:
|
343 |
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
|
344 |
+
else:
|
345 |
+
st.write('Local GPT model is selected. All info remains local.')
|
346 |
with col3:
|
347 |
+
if usage == 'RAG':
|
348 |
+
if use_pinecone == True:
|
349 |
+
PINECONE_API_KEY = st.text_input(
|
350 |
+
"Pinecone API key:", type="password")
|
351 |
+
PINECONE_API_ENV = st.text_input(
|
352 |
+
"Pinecone API env:", type="password")
|
353 |
+
pinecone_index_name = st.text_input('Pinecone index:')
|
354 |
+
pinecone.init(api_key=PINECONE_API_KEY,
|
355 |
+
environment=PINECONE_API_ENV)
|
356 |
+
else:
|
357 |
+
chroma_collection_name = st.text_input(
|
358 |
+
'''Chroma collection name of 3-63 characters:''')
|
359 |
+
persist_directory = "./vectorstore"
|
360 |
else:
|
361 |
+
hist_fn = st.text_input('Chat history filename')
|
|
|
|
|
362 |
if use_openai == False:
|
363 |
user_llm_path = st.text_input(
|
364 |
"Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:",
|
|
|
366 |
if 'default' in user_llm_path:
|
367 |
user_llm_path = local_llm_path
|
368 |
|
369 |
+
if ( (pinecone_index_name or chroma_collection_name or usage == 'Task' or usage == 'Chat')
|
370 |
and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ):
|
371 |
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path)
|
372 |
#if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm:
|
373 |
+
session_name = pinecone_index_name + chroma_collection_name + hist_fn
|
374 |
+
if usage != 'Chat':
|
375 |
+
if r_ingest.lower() == 'yes':
|
376 |
+
files = st.file_uploader(
|
377 |
+
'Upload Files', accept_multiple_files=True)
|
378 |
+
if files:
|
379 |
+
save_file(files)
|
380 |
+
all_texts, n_texts = load_files()
|
381 |
+
if usage == 'RAG':
|
382 |
+
docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name,
|
383 |
+
chroma_collection_name, persist_directory)
|
384 |
+
docsearch_ready = True
|
385 |
+
else:
|
386 |
+
st.write(
|
387 |
+
'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.')
|
388 |
+
docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name,
|
389 |
+
embeddings, chroma_collection_name, persist_directory)
|
390 |
docsearch_ready = True
|
391 |
else:
|
|
|
|
|
|
|
|
|
392 |
docsearch_ready = True
|
393 |
if docsearch_ready:
|
394 |
+
prompt = setup_prompt(r_llm, usage)
|
395 |
+
#if usage == 'RAG' or usage == 'Chat':
|
|
|
|
|
396 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
397 |
+
if usage == 'RAG':
|
398 |
+
# number of sources (split-documents when ingesting files); default is 4
|
399 |
+
k = min([20, n_texts])
|
400 |
+
retriever = setup_retriever(docsearch, k)
|
401 |
+
CRqa = ConversationalRetrievalChain.from_llm(
|
402 |
+
llm,
|
403 |
+
chain_type="stuff",
|
404 |
+
retriever=retriever,
|
405 |
+
memory=memory,
|
406 |
+
return_source_documents=True,
|
407 |
+
combine_docs_chain_kwargs={'prompt': prompt},
|
408 |
+
)
|
409 |
+
elif usage == 'Chat':
|
410 |
+
CRqa = LLMChain(
|
411 |
+
llm=llm,
|
412 |
+
prompt=prompt,
|
413 |
+
)
|
414 |
+
elif usage == 'Task':
|
415 |
+
CRqa = load_qa_chain(
|
416 |
+
llm=llm,
|
417 |
+
chain_type="stuff",
|
418 |
+
prompt=prompt
|
419 |
+
)
|
420 |
st.title(':blue[Chatbot]')
|
421 |
# Get user input
|
422 |
query = st.text_area('Enter your question:', height=10,
|
423 |
+
placeholder='''Summarize the context.
|
424 |
\nAfter typing your question, click on SUBMIT to send it to the bot.''')
|
425 |
submitted = st.button('SUBMIT')
|
426 |
|
|
|
432 |
# Generate a reply based on the user input and chat history
|
433 |
chat_history = [(user, bot)
|
434 |
for user, bot in chat_history]
|
435 |
+
if usage == 'RAG':
|
436 |
+
reply, source = get_response(query, chat_history, CRqa)
|
437 |
+
elif usage == 'Chat':
|
438 |
+
reply = CRqa({"question": query, "chat_history": chat_history, "return_only_outputs": True})
|
439 |
+
reply = reply['text']
|
440 |
+
elif usage == 'Task':
|
441 |
+
reply = []
|
442 |
+
for a_text in all_texts:
|
443 |
+
output_text = CRqa.run(input_documents=[a_text], question=query )
|
444 |
+
reply.append ( output_text )
|
445 |
# Update the chat history with the user input and system response
|
446 |
chat_history.append(('User', query))
|
447 |
chat_history.append(('Bot', reply))
|
|
|
456 |
chat_history_str1 = '<br>'.join([f'<span class=\"my_title\">{x[0]}:</span> {x[1]}' for x in latest_chats])
|
457 |
st.markdown(f'<div class=\"chat-record\">{chat_history_str1}</div>', unsafe_allow_html=True)
|
458 |
|
459 |
+
if usage == 'RAG' and reply and source:
|
460 |
# Display sources
|
461 |
for i, source_i in enumerate(source):
|
462 |
if i < k_sources:
|