# Import required libraries from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import ( UnstructuredWordDocumentLoader, PyMuPDFLoader, UnstructuredFileLoader, ) from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.chat_models import ChatOpenAI from langchain.vectorstores import Pinecone, Chroma from langchain.chains import ConversationalRetrievalChain from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory import os import langchain import pinecone import streamlit as st import shutil import json OPENAI_API_KEY = '' PINECONE_API_KEY = '' PINECONE_API_ENV = '' gpt3p5 = 'gpt-3.5-turbo-1106' gpt4 = 'gpt-4-1106-preview' gpt_local_mistral = 'mistral_7b' gpt_local_llama = 'llama_13b' langchain.verbose = False @st.cache_data() def init(): pinecone_index_name = '' chroma_collection_name = '' persist_directory = '' docsearch_ready = False directory_name = 'tmp_docs' return pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name @st.cache_data() def save_file(files): # Remove existing files in the directory if os.path.exists(directory_name): for filename in os.listdir(directory_name): file_path = os.path.join(directory_name, filename) try: if os.path.isfile(file_path): os.remove(file_path) except Exception as e: print(f"Error: {e}") # Save the new file with original filename if files is not None: for file in files: file_name = file.name file_path = os.path.join(directory_name, file_name) with open(file_path, 'wb') as f: shutil.copyfileobj(file, f) def load_files(): all_texts = [] n_files = 0 n_char = 0 n_texts = 0 text_splitter = RecursiveCharacterTextSplitter( chunk_size=400, chunk_overlap=50 ) for filename in os.listdir(directory_name): file = os.path.join(directory_name, filename) if os.path.isfile(file): if file.endswith(".docx"): loader = UnstructuredWordDocumentLoader(file) elif file.endswith(".pdf"): loader = PyMuPDFLoader(file) else: # assume a pure text format and attempt to load it loader = UnstructuredFileLoader(file) data = loader.load() texts = text_splitter.split_documents(data) n_files += 1 n_char += len(data[0].page_content) n_texts += len(texts) all_texts.extend(texts) st.write( f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents." ) return all_texts, n_texts @st.cache_resource() def ingest(_all_texts, use_pinecone, _embeddings, pinecone_index_name, chroma_collection_name, persist_directory): if use_pinecone: docsearch = Pinecone.from_texts( [t.page_content for t in _all_texts], _embeddings, index_name=pinecone_index_name) # add namespace=pinecone_namespace if provided else: docsearch = Chroma.from_documents( _all_texts, _embeddings, collection_name=chroma_collection_name, persist_directory=persist_directory) return docsearch def setup_retriever(docsearch, k): retriever = docsearch.as_retriever( search_type="similarity", search_kwargs={"k": k}, include_metadata=True) return retriever def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory): docsearch = [] n_texts = 0 if use_pinecone: # Load the pre-created Pinecone index. # The index which has already be stored in pinecone.io as long-term memory if pinecone_index_name in pinecone.list_indexes(): docsearch = Pinecone.from_existing_index( pinecone_index_name, embeddings) # add namespace=pinecone_namespace if provided index_client = pinecone.Index(pinecone_index_name) # Get the index information index_info = index_client.describe_index_stats() # namespace_name = '' # if index_info is not None: # print(index_info['namespaces'][namespace_name]['vector_count']) # else: # print("Index information is not available.") # n_texts = index_info['namespaces'][namespace_name]['vector_count'] n_texts = index_info['total_vector_count'] else: raise ValueError('''Cannot find the specified Pinecone index. Create one in pinecone.io or using, e.g., pinecone.create_index( name=index_name, dimension=1536, metric="cosine", shards=1)''') else: docsearch = Chroma(persist_directory=persist_directory, embedding_function=embeddings, collection_name=chroma_collection_name) n_texts = docsearch._collection.count() return docsearch, n_texts def get_response(query, chat_history, CRqa): result = CRqa({"question": query, "chat_history": chat_history}) return result['answer'], result['source_documents'] @st.cache_resource() def use_local_llm(r_llm, local_llm_path): from langchain.llms import LlamaCpp from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from huggingface_hub import hf_hub_download model_tuples = [ ("TheBloke/OpenHermes-2-Mistral-7B-GGUF", "openhermes-2-mistral-7b.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"), ("TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q2_K.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"), ("TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q8_0.gguf", "mistral", "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF"), ("TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q4_K_M.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"), ("TheBloke/Llama-2-13B-chat-GGUF", "llama-2-13b-chat.Q8_0.gguf", "llama", "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF"), ] callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) if r_llm == gpt_local_mistral: model_name, model_file, model_type, model_link = model_tuples[0] else: model_name, model_file, model_type, model_link = model_tuples[3] model_path = os.path.join( local_llm_path, model_name, model_file ) model_path = os.path.normpath( model_path ) if not os.path.exists(model_path): print("model not existing at ", model_path, "\n") model_path = hf_hub_download(repo_id=model_name, filename=model_file, repo_type="model", #cache_dir=local_llm_path, local_dir=local_llm_path, local_dir_use_symlinks=False) print("\n model downloaded at path=",model_path) else: print("model existing at ", model_path) llm = LlamaCpp( model_path=model_path, temperature=0.0, n_batch=300, n_ctx=4000, max_tokens=2000, n_gpu_layers=10, n_threads=12, top_p=1, repeat_penalty=1.15, verbose=False, callback_manager=callback_manager, streaming=True, # verbose=True, # Verbose is required to pass to the callback manager ) return llm def setup_prompt(): template = """Answer the question in your own words as truthfully as possible from the context given to you. Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic. Think step by step and do not jump to conclusion during your reasoning at the beginning. Sometimes user's question may appear to be directly related to the context but may still be indirectly related, so try your best to understand the question based on the context and chat history. If questions are asked where there is no relevant context available, respond using out-of-context knowledge with "This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context." Context: {context} {chat_history} User: {question} Bot:""" prompt = PromptTemplate( input_variables=["context", "chat_history", "question"], template=template ) return prompt def setup_em_llm(OPENAI_API_KEY, temperature, r_llm, local_llm_path): if (r_llm == gpt3p5 or r_llm == gpt4) and OPENAI_API_KEY: # Set up OpenAI embeddings embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) # Use Open AI LLM with gpt-3.5-turbo or gpt-4. # Set the temperature to be 0 if you do not want it to make up things llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True, openai_api_key=OPENAI_API_KEY) elif r_llm == gpt_local_mistral or r_llm == gpt_local_llama: #em_model_name = 'hkunlp/instructor-xl' em_model_name='sentence-transformers/all-mpnet-base-v2' embeddings = HuggingFaceEmbeddings(model_name=em_model_name) llm = use_local_llm(r_llm, local_llm_path) else: embeddings = [] llm = [] return embeddings, llm def load_chat_history(CHAT_HISTORY_FILENAME): try: with open(CHAT_HISTORY_FILENAME, 'r') as f: chat_history = json.load(f) except (FileNotFoundError, json.JSONDecodeError): chat_history = [] return chat_history def save_chat_history(chat_history, CHAT_HISTORY_FILENAME): with open(CHAT_HISTORY_FILENAME, 'w') as f: json.dump(chat_history, f) pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name = init() def main(pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name): docsearch_ready = False chat_history = [] latest_chats = [] reply = '' source = '' LLMs = [gpt3p5, gpt4, gpt_local_llama, gpt_local_mistral] local_llm_path = './models/' user_llm_path = '' # Get user input of whether to use Pinecone or not col1, col2, col3 = st.columns([1, 1, 1]) # create the radio buttons and text input fields with col1: r_llm = st.multiselect(label='LLM:', options=LLMs, default=gpt3p5, max_selections=1) if not r_llm: r_llm = gpt3p5 else: r_llm = r_llm[0] if r_llm == gpt3p5 or r_llm == gpt4: use_openai = True else: use_openai = False r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)')) r_ingest = st.radio( 'Ingest file(s)?', ('Yes', 'No')) if r_pinecone == 'Pinecone (online)': use_pinecone = True else: use_pinecone = False with col2: temperature = st.slider('Temperature', 0.0, 1.0, 0.1) k_sources = st.slider('# source(s) to print out', 0, 20, 2) if use_openai == True: OPENAI_API_KEY = st.text_input( "OpenAI API key:", type="password") else: OPENAI_API_KEY = '' if use_pinecone == True: st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.') else: st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.') with col3: if use_pinecone == True: PINECONE_API_KEY = st.text_input( "Pinecone API key:", type="password") PINECONE_API_ENV = st.text_input( "Pinecone API env:", type="password") pinecone_index_name = st.text_input('Pinecone index:') pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_API_ENV) else: chroma_collection_name = st.text_input( '''Chroma collection name of 3-63 characters:''') persist_directory = "./vectorstore" if use_openai == False: user_llm_path = st.text_input( "Path for local model (TO BE DOWNLOADED IF NOT EXISTING), type 'default' to use default path:", placeholder="default") if 'default' in user_llm_path: user_llm_path = local_llm_path if ( (pinecone_index_name or chroma_collection_name) and ( (use_openai and OPENAI_API_KEY) or (not use_openai and user_llm_path) ) ): embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm, user_llm_path) #if ( pinecone_index_name or chroma_collection_name ) and embeddings and llm: session_name = pinecone_index_name + chroma_collection_name if r_ingest.lower() == 'yes': files = st.file_uploader( 'Upload Files', accept_multiple_files=True) if files: save_file(files) all_texts, n_texts = load_files() docsearch = ingest(all_texts, use_pinecone, embeddings, pinecone_index_name, chroma_collection_name, persist_directory) docsearch_ready = True else: st.write( 'No data is to be ingested. Make sure the Pinecone index or Chroma collection name you provided contains data.') docsearch, n_texts = setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collection_name, persist_directory) docsearch_ready = True if docsearch_ready: # number of sources (split-documents when ingesting files); default is 4 k = min([20, n_texts]) retriever = setup_retriever(docsearch, k) #prompt = setup_prompt() memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer') CRqa = ConversationalRetrievalChain.from_llm( llm, chain_type="stuff", retriever=retriever, memory=memory, return_source_documents=True, #combine_docs_chain_kwargs={'prompt': prompt}, ) st.title(':blue[Chatbot]') # Get user input query = st.text_area('Enter your question:', height=10, placeholder='''Summarize the context. \nAfter typing your question, click on SUBMIT to send it to the bot.''') submitted = st.button('SUBMIT') CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json" chat_history = load_chat_history(CHAT_HISTORY_FILENAME) st.markdown('', unsafe_allow_html=True) if query and submitted: # Generate a reply based on the user input and chat history chat_history = [(user, bot) for user, bot in chat_history] reply, source = get_response(query, chat_history, CRqa) # Update the chat history with the user input and system response chat_history.append(('User', query)) chat_history.append(('Bot', reply)) save_chat_history(chat_history, CHAT_HISTORY_FILENAME) c = chat_history[-4:] if len(chat_history) >= 4: latest_chats = [c[2],c[3],c[0],c[1]] else: latest_chats = c if latest_chats: chat_history_str1 = '
'.join([f'{x[0]}: {x[1]}' for x in latest_chats]) st.markdown(f'
{chat_history_str1}
', unsafe_allow_html=True) if reply and source: # Display sources for i, source_i in enumerate(source): if i < k_sources: if len(source_i.page_content) > 400: page_content = source_i.page_content[:400] else: page_content = source_i.page_content if source_i.metadata: metadata_source = source_i.metadata['source'] st.markdown(f"

Source {i+1}: {metadata_source}


{page_content}", unsafe_allow_html=True) else: st.markdown(f"

Source {i+1}:


{page_content}", unsafe_allow_html=True) all_chats = chat_history all_chat_history_str = '\n'.join( [f'{x[0]}: {x[1]}' for x in all_chats]) st.title(':blue[All chat records]') st.text_area('Chat records in ascending order:', value=all_chat_history_str, height=250, label_visibility='collapsed') if __name__ == '__main__': main(pinecone_index_name, chroma_collection_name, persist_directory, docsearch_ready, directory_name)