Face-Real-ESRGAN / rrdbnet_arch.py
doevent's picture
Upload rrdbnet_arch.py
ad25d3e
raw
history blame
4.76 kB
import torch
from torch import nn as nn
from torch.nn import functional as F
from arch_util import default_init_weights, make_layer, pixel_unshuffle
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat=64, num_grow_ch=32):
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
# Emperically, we use 0.2 to scale the residual for better performance
return x5 * 0.2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat, num_grow_ch=32):
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x):
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
# Emperically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
We extend ESRGAN for scale x2 and scale x1.
Note: This is one option for scale 1, scale 2 in RRDBNet.
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_feat (int): Channel number of intermediate features.
Default: 64
num_block (int): Block number in the trunk network. Defaults: 23
num_grow_ch (int): Channels for each growth. Default: 32.
"""
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
super(RRDBNet, self).__init__()
self.scale = scale
if scale == 2:
num_in_ch = num_in_ch * 4
elif scale == 1:
num_in_ch = num_in_ch * 16
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
if scale == 8:
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
if self.scale == 2:
feat = pixel_unshuffle(x, scale=2)
elif self.scale == 1:
feat = pixel_unshuffle(x, scale=4)
else:
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
# upsample
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
if self.scale == 8:
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out