Spaces:
Running
on
Zero
Running
on
Zero
Upload arch_util.py
Browse files- arch_util.py +197 -0
arch_util.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.nn import init as init
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
@torch.no_grad()
|
9 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
10 |
+
"""Initialize network weights.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
14 |
+
scale (float): Scale initialized weights, especially for residual
|
15 |
+
blocks. Default: 1.
|
16 |
+
bias_fill (float): The value to fill bias. Default: 0
|
17 |
+
kwargs (dict): Other arguments for initialization function.
|
18 |
+
"""
|
19 |
+
if not isinstance(module_list, list):
|
20 |
+
module_list = [module_list]
|
21 |
+
for module in module_list:
|
22 |
+
for m in module.modules():
|
23 |
+
if isinstance(m, nn.Conv2d):
|
24 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
25 |
+
m.weight.data *= scale
|
26 |
+
if m.bias is not None:
|
27 |
+
m.bias.data.fill_(bias_fill)
|
28 |
+
elif isinstance(m, nn.Linear):
|
29 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
30 |
+
m.weight.data *= scale
|
31 |
+
if m.bias is not None:
|
32 |
+
m.bias.data.fill_(bias_fill)
|
33 |
+
elif isinstance(m, _BatchNorm):
|
34 |
+
init.constant_(m.weight, 1)
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
|
38 |
+
|
39 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
40 |
+
"""Make layers by stacking the same blocks.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
basic_block (nn.module): nn.module class for basic block.
|
44 |
+
num_basic_block (int): number of blocks.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
48 |
+
"""
|
49 |
+
layers = []
|
50 |
+
for _ in range(num_basic_block):
|
51 |
+
layers.append(basic_block(**kwarg))
|
52 |
+
return nn.Sequential(*layers)
|
53 |
+
|
54 |
+
|
55 |
+
class ResidualBlockNoBN(nn.Module):
|
56 |
+
"""Residual block without BN.
|
57 |
+
|
58 |
+
It has a style of:
|
59 |
+
---Conv-ReLU-Conv-+-
|
60 |
+
|________________|
|
61 |
+
|
62 |
+
Args:
|
63 |
+
num_feat (int): Channel number of intermediate features.
|
64 |
+
Default: 64.
|
65 |
+
res_scale (float): Residual scale. Default: 1.
|
66 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
67 |
+
otherwise, use default_init_weights. Default: False.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
71 |
+
super(ResidualBlockNoBN, self).__init__()
|
72 |
+
self.res_scale = res_scale
|
73 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
74 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
|
77 |
+
if not pytorch_init:
|
78 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
identity = x
|
82 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
83 |
+
return identity + out * self.res_scale
|
84 |
+
|
85 |
+
|
86 |
+
class Upsample(nn.Sequential):
|
87 |
+
"""Upsample module.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
91 |
+
num_feat (int): Channel number of intermediate features.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, scale, num_feat):
|
95 |
+
m = []
|
96 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
97 |
+
for _ in range(int(math.log(scale, 2))):
|
98 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
99 |
+
m.append(nn.PixelShuffle(2))
|
100 |
+
elif scale == 3:
|
101 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
102 |
+
m.append(nn.PixelShuffle(3))
|
103 |
+
else:
|
104 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
105 |
+
super(Upsample, self).__init__(*m)
|
106 |
+
|
107 |
+
|
108 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
109 |
+
"""Warp an image or feature map with optical flow.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
113 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
114 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
115 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
116 |
+
Default: 'zeros'.
|
117 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
118 |
+
align_corners=True. After pytorch 1.3, the default value is
|
119 |
+
align_corners=False. Here, we use the True as default.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
Tensor: Warped image or feature map.
|
123 |
+
"""
|
124 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
125 |
+
_, _, h, w = x.size()
|
126 |
+
# create mesh grid
|
127 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
128 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
129 |
+
grid.requires_grad = False
|
130 |
+
|
131 |
+
vgrid = grid + flow
|
132 |
+
# scale grid to [-1,1]
|
133 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
134 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
135 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
136 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
137 |
+
|
138 |
+
# TODO, what if align_corners=False
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
143 |
+
"""Resize a flow according to ratio or shape.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
147 |
+
size_type (str): 'ratio' or 'shape'.
|
148 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
149 |
+
shape.
|
150 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
151 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
152 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
153 |
+
ratio > 1.0).
|
154 |
+
2) The order of output_size should be [out_h, out_w].
|
155 |
+
interp_mode (str): The mode of interpolation for resizing.
|
156 |
+
Default: 'bilinear'.
|
157 |
+
align_corners (bool): Whether align corners. Default: False.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Tensor: Resized flow.
|
161 |
+
"""
|
162 |
+
_, _, flow_h, flow_w = flow.size()
|
163 |
+
if size_type == 'ratio':
|
164 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
165 |
+
elif size_type == 'shape':
|
166 |
+
output_h, output_w = sizes[0], sizes[1]
|
167 |
+
else:
|
168 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
169 |
+
|
170 |
+
input_flow = flow.clone()
|
171 |
+
ratio_h = output_h / flow_h
|
172 |
+
ratio_w = output_w / flow_w
|
173 |
+
input_flow[:, 0, :, :] *= ratio_w
|
174 |
+
input_flow[:, 1, :, :] *= ratio_h
|
175 |
+
resized_flow = F.interpolate(
|
176 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
177 |
+
return resized_flow
|
178 |
+
|
179 |
+
|
180 |
+
# TODO: may write a cpp file
|
181 |
+
def pixel_unshuffle(x, scale):
|
182 |
+
""" Pixel unshuffle.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
186 |
+
scale (int): Downsample ratio.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Tensor: the pixel unshuffled feature.
|
190 |
+
"""
|
191 |
+
b, c, hh, hw = x.size()
|
192 |
+
out_channel = c * (scale**2)
|
193 |
+
assert hh % scale == 0 and hw % scale == 0
|
194 |
+
h = hh // scale
|
195 |
+
w = hw // scale
|
196 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
197 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|