doevent commited on
Commit
980fbe6
1 Parent(s): ad25d3e

Upload arch_util.py

Browse files
Files changed (1) hide show
  1. arch_util.py +197 -0
arch_util.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+ from torch.nn import init as init
6
+ from torch.nn.modules.batchnorm import _BatchNorm
7
+
8
+ @torch.no_grad()
9
+ def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
10
+ """Initialize network weights.
11
+
12
+ Args:
13
+ module_list (list[nn.Module] | nn.Module): Modules to be initialized.
14
+ scale (float): Scale initialized weights, especially for residual
15
+ blocks. Default: 1.
16
+ bias_fill (float): The value to fill bias. Default: 0
17
+ kwargs (dict): Other arguments for initialization function.
18
+ """
19
+ if not isinstance(module_list, list):
20
+ module_list = [module_list]
21
+ for module in module_list:
22
+ for m in module.modules():
23
+ if isinstance(m, nn.Conv2d):
24
+ init.kaiming_normal_(m.weight, **kwargs)
25
+ m.weight.data *= scale
26
+ if m.bias is not None:
27
+ m.bias.data.fill_(bias_fill)
28
+ elif isinstance(m, nn.Linear):
29
+ init.kaiming_normal_(m.weight, **kwargs)
30
+ m.weight.data *= scale
31
+ if m.bias is not None:
32
+ m.bias.data.fill_(bias_fill)
33
+ elif isinstance(m, _BatchNorm):
34
+ init.constant_(m.weight, 1)
35
+ if m.bias is not None:
36
+ m.bias.data.fill_(bias_fill)
37
+
38
+
39
+ def make_layer(basic_block, num_basic_block, **kwarg):
40
+ """Make layers by stacking the same blocks.
41
+
42
+ Args:
43
+ basic_block (nn.module): nn.module class for basic block.
44
+ num_basic_block (int): number of blocks.
45
+
46
+ Returns:
47
+ nn.Sequential: Stacked blocks in nn.Sequential.
48
+ """
49
+ layers = []
50
+ for _ in range(num_basic_block):
51
+ layers.append(basic_block(**kwarg))
52
+ return nn.Sequential(*layers)
53
+
54
+
55
+ class ResidualBlockNoBN(nn.Module):
56
+ """Residual block without BN.
57
+
58
+ It has a style of:
59
+ ---Conv-ReLU-Conv-+-
60
+ |________________|
61
+
62
+ Args:
63
+ num_feat (int): Channel number of intermediate features.
64
+ Default: 64.
65
+ res_scale (float): Residual scale. Default: 1.
66
+ pytorch_init (bool): If set to True, use pytorch default init,
67
+ otherwise, use default_init_weights. Default: False.
68
+ """
69
+
70
+ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
71
+ super(ResidualBlockNoBN, self).__init__()
72
+ self.res_scale = res_scale
73
+ self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
74
+ self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
75
+ self.relu = nn.ReLU(inplace=True)
76
+
77
+ if not pytorch_init:
78
+ default_init_weights([self.conv1, self.conv2], 0.1)
79
+
80
+ def forward(self, x):
81
+ identity = x
82
+ out = self.conv2(self.relu(self.conv1(x)))
83
+ return identity + out * self.res_scale
84
+
85
+
86
+ class Upsample(nn.Sequential):
87
+ """Upsample module.
88
+
89
+ Args:
90
+ scale (int): Scale factor. Supported scales: 2^n and 3.
91
+ num_feat (int): Channel number of intermediate features.
92
+ """
93
+
94
+ def __init__(self, scale, num_feat):
95
+ m = []
96
+ if (scale & (scale - 1)) == 0: # scale = 2^n
97
+ for _ in range(int(math.log(scale, 2))):
98
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
99
+ m.append(nn.PixelShuffle(2))
100
+ elif scale == 3:
101
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
102
+ m.append(nn.PixelShuffle(3))
103
+ else:
104
+ raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
105
+ super(Upsample, self).__init__(*m)
106
+
107
+
108
+ def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
109
+ """Warp an image or feature map with optical flow.
110
+
111
+ Args:
112
+ x (Tensor): Tensor with size (n, c, h, w).
113
+ flow (Tensor): Tensor with size (n, h, w, 2), normal value.
114
+ interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
115
+ padding_mode (str): 'zeros' or 'border' or 'reflection'.
116
+ Default: 'zeros'.
117
+ align_corners (bool): Before pytorch 1.3, the default value is
118
+ align_corners=True. After pytorch 1.3, the default value is
119
+ align_corners=False. Here, we use the True as default.
120
+
121
+ Returns:
122
+ Tensor: Warped image or feature map.
123
+ """
124
+ assert x.size()[-2:] == flow.size()[1:3]
125
+ _, _, h, w = x.size()
126
+ # create mesh grid
127
+ grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
128
+ grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
129
+ grid.requires_grad = False
130
+
131
+ vgrid = grid + flow
132
+ # scale grid to [-1,1]
133
+ vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
134
+ vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
135
+ vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
136
+ output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
137
+
138
+ # TODO, what if align_corners=False
139
+ return output
140
+
141
+
142
+ def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
143
+ """Resize a flow according to ratio or shape.
144
+
145
+ Args:
146
+ flow (Tensor): Precomputed flow. shape [N, 2, H, W].
147
+ size_type (str): 'ratio' or 'shape'.
148
+ sizes (list[int | float]): the ratio for resizing or the final output
149
+ shape.
150
+ 1) The order of ratio should be [ratio_h, ratio_w]. For
151
+ downsampling, the ratio should be smaller than 1.0 (i.e., ratio
152
+ < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
153
+ ratio > 1.0).
154
+ 2) The order of output_size should be [out_h, out_w].
155
+ interp_mode (str): The mode of interpolation for resizing.
156
+ Default: 'bilinear'.
157
+ align_corners (bool): Whether align corners. Default: False.
158
+
159
+ Returns:
160
+ Tensor: Resized flow.
161
+ """
162
+ _, _, flow_h, flow_w = flow.size()
163
+ if size_type == 'ratio':
164
+ output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
165
+ elif size_type == 'shape':
166
+ output_h, output_w = sizes[0], sizes[1]
167
+ else:
168
+ raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
169
+
170
+ input_flow = flow.clone()
171
+ ratio_h = output_h / flow_h
172
+ ratio_w = output_w / flow_w
173
+ input_flow[:, 0, :, :] *= ratio_w
174
+ input_flow[:, 1, :, :] *= ratio_h
175
+ resized_flow = F.interpolate(
176
+ input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
177
+ return resized_flow
178
+
179
+
180
+ # TODO: may write a cpp file
181
+ def pixel_unshuffle(x, scale):
182
+ """ Pixel unshuffle.
183
+
184
+ Args:
185
+ x (Tensor): Input feature with shape (b, c, hh, hw).
186
+ scale (int): Downsample ratio.
187
+
188
+ Returns:
189
+ Tensor: the pixel unshuffled feature.
190
+ """
191
+ b, c, hh, hw = x.size()
192
+ out_channel = c * (scale**2)
193
+ assert hh % scale == 0 and hw % scale == 0
194
+ h = hh // scale
195
+ w = hw // scale
196
+ x_view = x.view(b, c, h, scale, w, scale)
197
+ return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)