import torch from PIL import Image from RealESRGAN import RealESRGAN import gradio as gr device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model2 = RealESRGAN(device, scale=2) model2.load_weights('weights/RealESRGAN_x2.pth', download=True) model4 = RealESRGAN(device, scale=4) model4.load_weights('weights/RealESRGAN_x4.pth', download=True) model8 = RealESRGAN(device, scale=8) model8.load_weights('weights/RealESRGAN_x8.pth', download=True) def inference(image: Image, size: str) -> Image: try: if size == '2x': result = model2.predict(image.convert('RGB')) elif size == '4x': result = model4.predict(image.convert('RGB')) else: result = model8.predict(image.convert('RGB')) except Exception as e: print(e) raise gr.Error(str(e)) return result title = "Face Real ESRGAN: 2x 4x 8x" description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.
Telegram BOT: https://t.me/restoration_photo_bot" article = "
Twitter Max Skobeev | Model card
visitor badge
" gr.Interface(inference, [gr.Image(type="pil"), gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model')], gr.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[['groot.jpeg', "2x"]], allow_flagging='never', theme="default", cache_examples=False, ).queue().launch(show_error=True)