Boboiazumi commited on
Commit
a487fdc
1 Parent(s): 96f7f03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -1
app.py CHANGED
@@ -88,6 +88,134 @@ def load_img(resize_width,img: str):
88
  img = img.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
89
  return img, resize_width, resize_height
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  @spaces.GPU
92
  def generate(
93
  prompt: str,
@@ -457,7 +585,7 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
457
  examples=config.examples,
458
  inputs=prompt,
459
  outputs=[result, gr_metadata],
460
- fn=lambda *args, **kwargs: fake_generate(*args, use_upscaler=True, **kwargs),
461
  cache_examples=CACHE_EXAMPLES,
462
  )
463
  use_upscaler.change(
 
88
  img = img.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
89
  return img, resize_width, resize_height
90
 
91
+ @spaces.GPU
92
+ def example_generate(
93
+ prompt: str,
94
+ negative_prompt: str = "",
95
+ seed: int = 0,
96
+ custom_width: int = 1024,
97
+ custom_height: int = 1024,
98
+ guidance_scale: float = 7.0,
99
+ num_inference_steps: int = 28,
100
+ sampler: str = "Euler a",
101
+ aspect_ratio_selector: str = "896 x 1152",
102
+ style_selector: str = "(None)",
103
+ quality_selector: str = "Standard v3.1",
104
+ use_upscaler: bool = False,
105
+ upscaler_strength: float = 0.55,
106
+ upscale_by: float = 1.5,
107
+ add_quality_tags: bool = True,
108
+ progress=gr.Progress(track_tqdm=True),
109
+ ):
110
+ generator = utils.seed_everything(seed)
111
+
112
+ width, height = utils.aspect_ratio_handler(
113
+ aspect_ratio_selector,
114
+ custom_width,
115
+ custom_height,
116
+ )
117
+
118
+ prompt = utils.add_wildcard(prompt, wildcard_files)
119
+
120
+ prompt, negative_prompt = utils.preprocess_prompt(
121
+ quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
122
+ )
123
+ prompt, negative_prompt = utils.preprocess_prompt(
124
+ styles, style_selector, prompt, negative_prompt
125
+ )
126
+
127
+ width, height = utils.preprocess_image_dimensions(width, height)
128
+
129
+ backup_scheduler = pipe.scheduler
130
+ pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
131
+
132
+ if use_upscaler:
133
+ upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
134
+ metadata = {
135
+ "prompt": prompt,
136
+ "negative_prompt": negative_prompt,
137
+ "resolution": f"{width} x {height}",
138
+ "guidance_scale": guidance_scale,
139
+ "num_inference_steps": num_inference_steps,
140
+ "seed": seed,
141
+ "sampler": sampler,
142
+ "sdxl_style": style_selector,
143
+ "add_quality_tags": add_quality_tags,
144
+ "quality_tags": quality_selector,
145
+ }
146
+
147
+ if use_upscaler:
148
+ new_width = int(width * upscale_by)
149
+ new_height = int(height * upscale_by)
150
+ metadata["use_upscaler"] = {
151
+ "upscale_method": "nearest-exact",
152
+ "upscaler_strength": upscaler_strength,
153
+ "upscale_by": upscale_by,
154
+ "new_resolution": f"{new_width} x {new_height}",
155
+ }
156
+ else:
157
+ metadata["use_upscaler"] = None
158
+ metadata["Model"] = {
159
+ "Model": DESCRIPTION,
160
+ "Model hash": "e3c47aedb0",
161
+ }
162
+
163
+ logger.info(json.dumps(metadata, indent=4))
164
+
165
+ try:
166
+ if use_upscaler:
167
+ latents = pipe(
168
+ prompt=prompt,
169
+ negative_prompt=negative_prompt,
170
+ width=width,
171
+ height=height,
172
+ guidance_scale=guidance_scale,
173
+ num_inference_steps=num_inference_steps,
174
+ generator=generator,
175
+ output_type="latent",
176
+ ).images
177
+ upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
178
+ images = upscaler_pipe(
179
+ prompt=prompt,
180
+ negative_prompt=negative_prompt,
181
+ image=upscaled_latents,
182
+ guidance_scale=guidance_scale,
183
+ num_inference_steps=num_inference_steps,
184
+ strength=upscaler_strength,
185
+ generator=generator,
186
+ output_type="pil",
187
+ ).images
188
+ else:
189
+ images = pipe(
190
+ prompt=prompt,
191
+ negative_prompt=negative_prompt,
192
+ width=width,
193
+ height=height,
194
+ guidance_scale=guidance_scale,
195
+ num_inference_steps=num_inference_steps,
196
+ generator=generator,
197
+ output_type="pil",
198
+ ).images
199
+
200
+ if images:
201
+ image_paths = [
202
+ utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
203
+ for image in images
204
+ ]
205
+
206
+ for image_path in image_paths:
207
+ logger.info(f"Image saved as {image_path} with metadata")
208
+
209
+ return image_paths, metadata
210
+ except Exception as e:
211
+ logger.exception(f"An error occurred: {e}")
212
+ raise
213
+ finally:
214
+ if use_upscaler:
215
+ del upscaler_pipe
216
+ pipe.scheduler = backup_scheduler
217
+ utils.free_memory()
218
+
219
  @spaces.GPU
220
  def generate(
221
  prompt: str,
 
585
  examples=config.examples,
586
  inputs=prompt,
587
  outputs=[result, gr_metadata],
588
+ fn=lambda *args, **kwargs: example_generate(*args, use_upscaler=True, **kwargs),
589
  cache_examples=CACHE_EXAMPLES,
590
  )
591
  use_upscaler.change(