Spaces:
Running
on
Zero
Running
on
Zero
Boboiazumi
commited on
Commit
•
a487fdc
1
Parent(s):
96f7f03
Update app.py
Browse files
app.py
CHANGED
@@ -88,6 +88,134 @@ def load_img(resize_width,img: str):
|
|
88 |
img = img.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
|
89 |
return img, resize_width, resize_height
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
@spaces.GPU
|
92 |
def generate(
|
93 |
prompt: str,
|
@@ -457,7 +585,7 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
|
457 |
examples=config.examples,
|
458 |
inputs=prompt,
|
459 |
outputs=[result, gr_metadata],
|
460 |
-
fn=lambda *args, **kwargs:
|
461 |
cache_examples=CACHE_EXAMPLES,
|
462 |
)
|
463 |
use_upscaler.change(
|
|
|
88 |
img = img.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
|
89 |
return img, resize_width, resize_height
|
90 |
|
91 |
+
@spaces.GPU
|
92 |
+
def example_generate(
|
93 |
+
prompt: str,
|
94 |
+
negative_prompt: str = "",
|
95 |
+
seed: int = 0,
|
96 |
+
custom_width: int = 1024,
|
97 |
+
custom_height: int = 1024,
|
98 |
+
guidance_scale: float = 7.0,
|
99 |
+
num_inference_steps: int = 28,
|
100 |
+
sampler: str = "Euler a",
|
101 |
+
aspect_ratio_selector: str = "896 x 1152",
|
102 |
+
style_selector: str = "(None)",
|
103 |
+
quality_selector: str = "Standard v3.1",
|
104 |
+
use_upscaler: bool = False,
|
105 |
+
upscaler_strength: float = 0.55,
|
106 |
+
upscale_by: float = 1.5,
|
107 |
+
add_quality_tags: bool = True,
|
108 |
+
progress=gr.Progress(track_tqdm=True),
|
109 |
+
):
|
110 |
+
generator = utils.seed_everything(seed)
|
111 |
+
|
112 |
+
width, height = utils.aspect_ratio_handler(
|
113 |
+
aspect_ratio_selector,
|
114 |
+
custom_width,
|
115 |
+
custom_height,
|
116 |
+
)
|
117 |
+
|
118 |
+
prompt = utils.add_wildcard(prompt, wildcard_files)
|
119 |
+
|
120 |
+
prompt, negative_prompt = utils.preprocess_prompt(
|
121 |
+
quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
|
122 |
+
)
|
123 |
+
prompt, negative_prompt = utils.preprocess_prompt(
|
124 |
+
styles, style_selector, prompt, negative_prompt
|
125 |
+
)
|
126 |
+
|
127 |
+
width, height = utils.preprocess_image_dimensions(width, height)
|
128 |
+
|
129 |
+
backup_scheduler = pipe.scheduler
|
130 |
+
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
131 |
+
|
132 |
+
if use_upscaler:
|
133 |
+
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
134 |
+
metadata = {
|
135 |
+
"prompt": prompt,
|
136 |
+
"negative_prompt": negative_prompt,
|
137 |
+
"resolution": f"{width} x {height}",
|
138 |
+
"guidance_scale": guidance_scale,
|
139 |
+
"num_inference_steps": num_inference_steps,
|
140 |
+
"seed": seed,
|
141 |
+
"sampler": sampler,
|
142 |
+
"sdxl_style": style_selector,
|
143 |
+
"add_quality_tags": add_quality_tags,
|
144 |
+
"quality_tags": quality_selector,
|
145 |
+
}
|
146 |
+
|
147 |
+
if use_upscaler:
|
148 |
+
new_width = int(width * upscale_by)
|
149 |
+
new_height = int(height * upscale_by)
|
150 |
+
metadata["use_upscaler"] = {
|
151 |
+
"upscale_method": "nearest-exact",
|
152 |
+
"upscaler_strength": upscaler_strength,
|
153 |
+
"upscale_by": upscale_by,
|
154 |
+
"new_resolution": f"{new_width} x {new_height}",
|
155 |
+
}
|
156 |
+
else:
|
157 |
+
metadata["use_upscaler"] = None
|
158 |
+
metadata["Model"] = {
|
159 |
+
"Model": DESCRIPTION,
|
160 |
+
"Model hash": "e3c47aedb0",
|
161 |
+
}
|
162 |
+
|
163 |
+
logger.info(json.dumps(metadata, indent=4))
|
164 |
+
|
165 |
+
try:
|
166 |
+
if use_upscaler:
|
167 |
+
latents = pipe(
|
168 |
+
prompt=prompt,
|
169 |
+
negative_prompt=negative_prompt,
|
170 |
+
width=width,
|
171 |
+
height=height,
|
172 |
+
guidance_scale=guidance_scale,
|
173 |
+
num_inference_steps=num_inference_steps,
|
174 |
+
generator=generator,
|
175 |
+
output_type="latent",
|
176 |
+
).images
|
177 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
178 |
+
images = upscaler_pipe(
|
179 |
+
prompt=prompt,
|
180 |
+
negative_prompt=negative_prompt,
|
181 |
+
image=upscaled_latents,
|
182 |
+
guidance_scale=guidance_scale,
|
183 |
+
num_inference_steps=num_inference_steps,
|
184 |
+
strength=upscaler_strength,
|
185 |
+
generator=generator,
|
186 |
+
output_type="pil",
|
187 |
+
).images
|
188 |
+
else:
|
189 |
+
images = pipe(
|
190 |
+
prompt=prompt,
|
191 |
+
negative_prompt=negative_prompt,
|
192 |
+
width=width,
|
193 |
+
height=height,
|
194 |
+
guidance_scale=guidance_scale,
|
195 |
+
num_inference_steps=num_inference_steps,
|
196 |
+
generator=generator,
|
197 |
+
output_type="pil",
|
198 |
+
).images
|
199 |
+
|
200 |
+
if images:
|
201 |
+
image_paths = [
|
202 |
+
utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
|
203 |
+
for image in images
|
204 |
+
]
|
205 |
+
|
206 |
+
for image_path in image_paths:
|
207 |
+
logger.info(f"Image saved as {image_path} with metadata")
|
208 |
+
|
209 |
+
return image_paths, metadata
|
210 |
+
except Exception as e:
|
211 |
+
logger.exception(f"An error occurred: {e}")
|
212 |
+
raise
|
213 |
+
finally:
|
214 |
+
if use_upscaler:
|
215 |
+
del upscaler_pipe
|
216 |
+
pipe.scheduler = backup_scheduler
|
217 |
+
utils.free_memory()
|
218 |
+
|
219 |
@spaces.GPU
|
220 |
def generate(
|
221 |
prompt: str,
|
|
|
585 |
examples=config.examples,
|
586 |
inputs=prompt,
|
587 |
outputs=[result, gr_metadata],
|
588 |
+
fn=lambda *args, **kwargs: example_generate(*args, use_upscaler=True, **kwargs),
|
589 |
cache_examples=CACHE_EXAMPLES,
|
590 |
)
|
591 |
use_upscaler.change(
|