BoburAmirov commited on
Commit
c8ddca9
·
1 Parent(s): f9f8922
Files changed (2) hide show
  1. app.py +47 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import gradio as gr
4
+
5
+ # Load the fine-tuned model and tokenizer
6
+ model_path = "BoburAmirov/test-llama-uz" # Adjust this to the path where your fine-tuned model is saved
7
+
8
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto')
9
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
10
+
11
+ # Ensure the tokenizer settings match those used during training
12
+ tokenizer.pad_token = tokenizer.eos_token
13
+ tokenizer.padding_side = "right"
14
+
15
+ # Set the model to evaluation mode
16
+ model.eval()
17
+
18
+ def generate_text(input_prompt):
19
+ # Tokenize the input
20
+ input_ids = tokenizer(input_prompt, return_tensors="pt")
21
+
22
+ # Generate text
23
+ with torch.no_grad():
24
+ output = model.generate(
25
+ input_ids,
26
+ max_length=400, # Adjust max_length as needed
27
+ num_return_sequences=1,
28
+ temperature=0.7, # Control randomness
29
+ top_p=0.9, # Control diversity
30
+ top_k=50, # Control diversity
31
+ )
32
+
33
+ # Decode the generated text
34
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
35
+ return generated_text
36
+
37
+ # Create a Gradio interface
38
+ iface = gr.Interface(
39
+ fn=generate_text,
40
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
41
+ outputs="text",
42
+ title="Text Generation with LLaMA",
43
+ description="Generate text using a fine-tuned LLaMA model."
44
+ )
45
+
46
+ if __name__ == "__main__":
47
+ iface.launch(server_name="0.0.0.0", server_port=7860)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ gradio