Spaces:
Runtime error
Runtime error
Commit
·
e0202e2
1
Parent(s):
5dc8399
model load class updated
Browse files
app.py
CHANGED
@@ -1,24 +1,17 @@
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Load the
|
7 |
-
|
8 |
-
tokenizer_path = "BoburAmirov/test-llama-uz" # Path to the tokenizer
|
9 |
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
tokenizer.padding_side = "right"
|
14 |
|
15 |
-
# Load the base model
|
16 |
-
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
|
17 |
-
|
18 |
-
# Load the adapter
|
19 |
-
adapter_path = "BoburAmirov/test-llama-uz/adapter_model.safetensors"
|
20 |
-
model = PeftModel.from_pretrained(base_model, adapter_path)
|
21 |
-
|
22 |
# Set the model to evaluation mode
|
23 |
model.eval()
|
24 |
|
@@ -30,7 +23,7 @@ def generate_text(input_prompt):
|
|
30 |
with torch.no_grad():
|
31 |
output = model.generate(
|
32 |
input_ids,
|
33 |
-
max_length=
|
34 |
num_return_sequences=1,
|
35 |
temperature=0.7, # Control randomness
|
36 |
top_p=0.9, # Control diversity
|
@@ -42,16 +35,13 @@ def generate_text(input_prompt):
|
|
42 |
return generated_text
|
43 |
|
44 |
# Create a Gradio interface
|
45 |
-
|
46 |
fn=generate_text,
|
47 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
48 |
outputs="text",
|
49 |
-
title="Text Generation with LLaMA
|
50 |
-
description="
|
51 |
)
|
52 |
|
53 |
-
# Launch the Gradio interface
|
54 |
-
|
55 |
-
|
56 |
if __name__ == "__main__":
|
57 |
-
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoPeftModelForCausalLM
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
model_path = "BoburAmirov/test-llama-uz" # Adjust this to the path where your fine-tuned model is saved
|
|
|
7 |
|
8 |
+
model = AutoPeftModelForCausalLM.from_pretrained(model_path, device_map='auto')
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
10 |
+
|
11 |
+
# Ensure the tokenizer settings match those used during training
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
tokenizer.padding_side = "right"
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Set the model to evaluation mode
|
16 |
model.eval()
|
17 |
|
|
|
23 |
with torch.no_grad():
|
24 |
output = model.generate(
|
25 |
input_ids,
|
26 |
+
max_length=400, # Adjust max_length as needed
|
27 |
num_return_sequences=1,
|
28 |
temperature=0.7, # Control randomness
|
29 |
top_p=0.9, # Control diversity
|
|
|
35 |
return generated_text
|
36 |
|
37 |
# Create a Gradio interface
|
38 |
+
iface = gr.Interface(
|
39 |
fn=generate_text,
|
40 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
41 |
outputs="text",
|
42 |
+
title="Text Generation with LLaMA",
|
43 |
+
description="Generate text using a fine-tuned LLaMA model."
|
44 |
)
|
45 |
|
|
|
|
|
|
|
46 |
if __name__ == "__main__":
|
47 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|