Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,589 Bytes
7e1fa02 99738e0 47dbef4 f3bd7d5 99738e0 2a887f4 b5ba35d 99738e0 ead67c4 47dbef4 5b14e9e 47dbef4 b3edf02 47dbef4 f3bd7d5 99738e0 47dbef4 1c193eb 99738e0 7e1fa02 99738e0 7e1fa02 99738e0 7e1fa02 99738e0 7e1fa02 99738e0 7e1fa02 99738e0 7e1fa02 99738e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
import torch
import spaces
import os
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from omegaconf import OmegaConf
from image_datasets.dataset import image_resize
args = OmegaConf.load("inference_configs/inference.yaml")
device = torch.device("cuda")
dtype = torch.bfloat16
@spaces.GPU
def generate(image: Image.Image, edit_prompt: str):
from src.flux.xflux_pipeline import XFluxSampler
sampler = XFluxSampler(
device = device,
ip_loaded=False,
spatial_condition=True,
clip_image_processor=None,
image_encoder=None,
improj=None
)
img = image_resize(image, 512)
w, h = img.size
img = img.resize(((w // 32) * 32, (h // 32) * 32))
img = torch.from_numpy((np.array(img) / 127.5) - 1)
img = img.permute(2, 0, 1).unsqueeze(0).to(device, dtype=dtype)
result = sampler(
prompt=edit_prompt,
width=args.sample_width,
height=args.sample_height,
num_steps=args.sample_steps,
image_prompt=None,
true_gs=args.cfg_scale,
seed=args.seed,
ip_scale=args.ip_scale if args.use_ip else 1.0,
source_image=img if args.use_spatial_condition else None,
)
return result
def get_samples():
sample_list = [
{
"image": "assets/0_camera_zoom/20486354.png",
"edit_prompt": "Zoom in on the coral and add a small blue fish in the background.",
},
]
return [
[
Image.open(sample["image"]).resize((512, 512)),
sample["edit_prompt"],
]
for sample in sample_list
]
header = """
# ByteMorph
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href=""><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/datasets/Boese0601/ByteMorph-Bench"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Boese0601/ByteMorph"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""
def create_app():
with gr.Blocks() as app:
gr.Markdown(header, elem_id="header")
with gr.Row(equal_height=False):
with gr.Column(variant="panel", elem_classes="inputPanel"):
original_image = gr.Image(
type="pil", label="Condition Image", width=300, elem_id="input"
)
edit_prompt = gr.Textbox(lines=2, label="Edit Prompt", elem_id="edit_prompt")
submit_btn = gr.Button("Run", elem_id="submit_btn")
with gr.Column(variant="panel", elem_classes="outputPanel"):
output_image = gr.Image(type="pil", elem_id="output")
with gr.Row():
examples = gr.Examples(
examples=get_samples(),
inputs=[original_image, edit_prompt],
label="Examples",
)
submit_btn.click(
fn=generate,
inputs=[original_image, edit_prompt],
outputs=output_image,
)
gr.HTML(
"""
<div style="text-align: center;">
* This demo's template was modified from <a href="https://arxiv.org/abs/2411.15098" target="_blank">OminiControl</a>.
</div>
"""
)
return app
if __name__ == "__main__":
create_app().launch(debug=False, share=False, ssr_mode=False)
|