Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
import torch
|
6 |
import math
|
7 |
import httpcore
|
|
|
8 |
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
|
9 |
|
10 |
"""
|
@@ -30,9 +31,11 @@ def respond(
|
|
30 |
messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})
|
31 |
|
32 |
#adding fatwa references
|
33 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
34 |
-
selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
|
35 |
-
encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
|
|
|
|
|
36 |
|
37 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
38 |
queries = [
|
@@ -58,7 +61,9 @@ def respond(
|
|
58 |
try:
|
59 |
print(index)
|
60 |
print(f'{row["user"]}')
|
61 |
-
|
|
|
|
|
62 |
print(user)
|
63 |
#print(row['assistant'])
|
64 |
assistant = translator.translate(row['assistant']).text
|
|
|
5 |
import torch
|
6 |
import math
|
7 |
import httpcore
|
8 |
+
import pickle
|
9 |
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
|
10 |
|
11 |
"""
|
|
|
31 |
messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})
|
32 |
|
33 |
#adding fatwa references
|
34 |
+
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
#selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
|
36 |
+
#encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
|
37 |
+
selected_references = pickle.load(open('selected_references.sav','rb'))
|
38 |
+
encoded_questions = pickle.load(open('encoded_questions.sav','rb'))
|
39 |
|
40 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
41 |
queries = [
|
|
|
61 |
try:
|
62 |
print(index)
|
63 |
print(f'{row["user"]}')
|
64 |
+
translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
|
65 |
+
print(translated)
|
66 |
+
user = translated.text
|
67 |
print(user)
|
68 |
#print(row['assistant'])
|
69 |
assistant = translator.translate(row['assistant']).text
|