File size: 5,559 Bytes
db31449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
""" from https://github.com/keithito/tacotron """

'''

Cleaners are transformations that run over the input text at both training and eval time.



Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"

hyperparameter. Some cleaners are English-specific. You'll typically want to use:

  1. "english_cleaners" for English text

  2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using

     the Unidecode library (https://pypi.python.org/pypi/Unidecode)

  3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update

     the symbols in symbols.py to match your data).

'''


# Regular expression matching whitespace:


import re
import inflect
from unidecode import unidecode
import eng_to_ipa as ipa
_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
    ('mrs', 'misess'),
    ('mr', 'mister'),
    ('dr', 'doctor'),
    ('st', 'saint'),
    ('co', 'company'),
    ('jr', 'junior'),
    ('maj', 'major'),
    ('gen', 'general'),
    ('drs', 'doctors'),
    ('rev', 'reverend'),
    ('lt', 'lieutenant'),
    ('hon', 'honorable'),
    ('sgt', 'sergeant'),
    ('capt', 'captain'),
    ('esq', 'esquire'),
    ('ltd', 'limited'),
    ('col', 'colonel'),
    ('ft', 'fort'),
]]


# List of (ipa, lazy ipa) pairs:
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('æ', 'e'),
    ('ɑ', 'a'),
    ('ɔ', 'o'),
    ('ð', 'z'),
    ('θ', 's'),
    ('ɛ', 'e'),
    ('ɪ', 'i'),
    ('ʊ', 'u'),
    ('ʒ', 'ʥ'),
    ('ʤ', 'ʥ'),
    ('ˈ', '↓'),
]]

# List of (ipa, lazy ipa2) pairs:
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('ð', 'z'),
    ('θ', 's'),
    ('ʒ', 'ʑ'),
    ('ʤ', 'dʑ'),
    ('ˈ', '↓'),
]]

# List of (ipa, ipa2) pairs
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('ʤ', 'dʒ'),
    ('ʧ', 'tʃ')
]]


def expand_abbreviations(text):
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def collapse_whitespace(text):
    return re.sub(r'\s+', ' ', text)


def _remove_commas(m):
    return m.group(1).replace(',', '')


def _expand_decimal_point(m):
    return m.group(1).replace('.', ' point ')


def _expand_dollars(m):
    match = m.group(1)
    parts = match.split('.')
    if len(parts) > 2:
        return match + ' dollars'  # Unexpected format
    dollars = int(parts[0]) if parts[0] else 0
    cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
    if dollars and cents:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
    elif dollars:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        return '%s %s' % (dollars, dollar_unit)
    elif cents:
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s' % (cents, cent_unit)
    else:
        return 'zero dollars'


def _expand_ordinal(m):
    return _inflect.number_to_words(m.group(0))


def _expand_number(m):
    num = int(m.group(0))
    if num > 1000 and num < 3000:
        if num == 2000:
            return 'two thousand'
        elif num > 2000 and num < 2010:
            return 'two thousand ' + _inflect.number_to_words(num % 100)
        elif num % 100 == 0:
            return _inflect.number_to_words(num // 100) + ' hundred'
        else:
            return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
    else:
        return _inflect.number_to_words(num, andword='')


def normalize_numbers(text):
    text = re.sub(_comma_number_re, _remove_commas, text)
    text = re.sub(_pounds_re, r'\1 pounds', text)
    text = re.sub(_dollars_re, _expand_dollars, text)
    text = re.sub(_decimal_number_re, _expand_decimal_point, text)
    text = re.sub(_ordinal_re, _expand_ordinal, text)
    text = re.sub(_number_re, _expand_number, text)
    return text


def mark_dark_l(text):
    return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)


def english_to_ipa(text):
    text = unidecode(text).lower()
    text = expand_abbreviations(text)
    text = normalize_numbers(text)
    phonemes = ipa.convert(text)
    phonemes = collapse_whitespace(phonemes)
    return phonemes


def english_to_lazy_ipa(text):
    text = english_to_ipa(text)
    for regex, replacement in _lazy_ipa:
        text = re.sub(regex, replacement, text)
    return text


def english_to_ipa2(text):
    text = english_to_ipa(text)
    text = mark_dark_l(text)
    for regex, replacement in _ipa_to_ipa2:
        text = re.sub(regex, replacement, text)
    return text.replace('...', '…')


def english_to_lazy_ipa2(text):
    text = english_to_ipa(text)
    for regex, replacement in _lazy_ipa2:
        text = re.sub(regex, replacement, text)
    return text