|
import torch |
|
import numpy as np |
|
import re |
|
import soundfile |
|
from openvoice import utils |
|
from openvoice import commons |
|
import os |
|
import librosa |
|
from openvoice.text import text_to_sequence |
|
from openvoice.mel_processing import spectrogram_torch |
|
from openvoice.models import SynthesizerTrn |
|
|
|
|
|
class OpenVoiceBaseClass(object): |
|
def __init__(self, |
|
config_path, |
|
device='cuda:0'): |
|
if 'cuda' in device: |
|
assert torch.cuda.is_available() |
|
|
|
hps = utils.get_hparams_from_file(config_path) |
|
|
|
model = SynthesizerTrn( |
|
len(getattr(hps, 'symbols', [])), |
|
hps.data.filter_length // 2 + 1, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
|
|
model.eval() |
|
self.model = model |
|
self.hps = hps |
|
self.device = device |
|
|
|
def load_ckpt(self, ckpt_path): |
|
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device)) |
|
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False) |
|
print("Loaded checkpoint '{}'".format(ckpt_path)) |
|
print('missing/unexpected keys:', a, b) |
|
|
|
|
|
class BaseSpeakerTTS(OpenVoiceBaseClass): |
|
language_marks = { |
|
"english": "EN", |
|
"chinese": "ZH", |
|
} |
|
|
|
@staticmethod |
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
@staticmethod |
|
def audio_numpy_concat(segment_data_list, sr, speed=1.): |
|
audio_segments = [] |
|
for segment_data in segment_data_list: |
|
audio_segments += segment_data.reshape(-1).tolist() |
|
audio_segments += [0] * int((sr * 0.05)/speed) |
|
audio_segments = np.array(audio_segments).astype(np.float32) |
|
return audio_segments |
|
|
|
@staticmethod |
|
def split_sentences_into_pieces(text, language_str): |
|
texts = utils.split_sentence(text, language_str=language_str) |
|
print(" > Text splitted to sentences.") |
|
print('\n'.join(texts)) |
|
print(" > ===========================") |
|
return texts |
|
|
|
def tts(self, text, output_path, speaker, language='English', speed=1.0): |
|
mark = self.language_marks.get(language.lower(), None) |
|
assert mark is not None, f"language {language} is not supported" |
|
|
|
texts = self.split_sentences_into_pieces(text, mark) |
|
|
|
audio_list = [] |
|
for t in texts: |
|
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t) |
|
t = f'[{mark}]{t}[{mark}]' |
|
stn_tst = self.get_text(t, self.hps, False) |
|
device = self.device |
|
speaker_id = self.hps.speakers[speaker] |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) |
|
sid = torch.LongTensor([speaker_id]).to(device) |
|
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6, |
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() |
|
audio_list.append(audio) |
|
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed) |
|
|
|
if output_path is None: |
|
return audio |
|
else: |
|
soundfile.write(output_path, audio, self.hps.data.sampling_rate) |
|
|
|
|
|
class ToneColorConverter(OpenVoiceBaseClass): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
if kwargs.get('enable_watermark', True): |
|
import wavmark |
|
self.watermark_model = wavmark.load_model().to(self.device) |
|
else: |
|
self.watermark_model = None |
|
self.version = getattr(self.hps, '_version_', "v1") |
|
|
|
|
|
|
|
def extract_se(self, ref_wav_list, se_save_path=None): |
|
if isinstance(ref_wav_list, str): |
|
ref_wav_list = [ref_wav_list] |
|
|
|
device = self.device |
|
hps = self.hps |
|
gs = [] |
|
|
|
for fname in ref_wav_list: |
|
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate) |
|
y = torch.FloatTensor(audio_ref) |
|
y = y.to(device) |
|
y = y.unsqueeze(0) |
|
y = spectrogram_torch(y, hps.data.filter_length, |
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, |
|
center=False).to(device) |
|
with torch.no_grad(): |
|
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1) |
|
gs.append(g.detach()) |
|
gs = torch.stack(gs).mean(0) |
|
|
|
if se_save_path is not None: |
|
os.makedirs(os.path.dirname(se_save_path), exist_ok=True) |
|
torch.save(gs.cpu(), se_save_path) |
|
|
|
return gs |
|
|
|
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"): |
|
hps = self.hps |
|
|
|
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate) |
|
audio = torch.tensor(audio).float() |
|
|
|
with torch.no_grad(): |
|
y = torch.FloatTensor(audio).to(self.device) |
|
y = y.unsqueeze(0) |
|
spec = spectrogram_torch(y, hps.data.filter_length, |
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, |
|
center=False).to(self.device) |
|
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device) |
|
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][ |
|
0, 0].data.cpu().float().numpy() |
|
audio = self.add_watermark(audio, message) |
|
if output_path is None: |
|
return audio |
|
else: |
|
soundfile.write(output_path, audio, hps.data.sampling_rate) |
|
|
|
def add_watermark(self, audio, message): |
|
if self.watermark_model is None: |
|
return audio |
|
device = self.device |
|
bits = utils.string_to_bits(message).reshape(-1) |
|
n_repeat = len(bits) // 32 |
|
|
|
K = 16000 |
|
coeff = 2 |
|
for n in range(n_repeat): |
|
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K] |
|
if len(trunck) != K: |
|
print('Audio too short, fail to add watermark') |
|
break |
|
message_npy = bits[n * 32: (n + 1) * 32] |
|
|
|
with torch.no_grad(): |
|
signal = torch.FloatTensor(trunck).to(device)[None] |
|
message_tensor = torch.FloatTensor(message_npy).to(device)[None] |
|
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor) |
|
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze() |
|
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy |
|
return audio |
|
|
|
def detect_watermark(self, audio, n_repeat): |
|
bits = [] |
|
K = 16000 |
|
coeff = 2 |
|
for n in range(n_repeat): |
|
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K] |
|
if len(trunck) != K: |
|
print('Audio too short, fail to detect watermark') |
|
return 'Fail' |
|
with torch.no_grad(): |
|
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0) |
|
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze() |
|
bits.append(message_decoded_npy) |
|
bits = np.stack(bits).reshape(-1, 8) |
|
message = utils.bits_to_string(bits) |
|
return message |
|
|
|
|