BoldActionMan's picture
Added app.py
941f600
raw
history blame
8.71 kB
import gradio as gr
import os
import torch
from openvoice import se_extractor
from openvoice.api import ToneColorConverter
import whisper
from moviepy.editor import VideoFileClip
from pydub import AudioSegment
from df.enhance import enhance, init_df, load_audio, save_audio
import translators as ts
from melo.api import TTS
from concurrent.futures import ThreadPoolExecutor
import ffmpeg
def process_video(video_file, language_choice):
if video_file == None or language_choice == None:
return None
# Initialize paths and devices
ckpt_converter = 'checkpoints_v2/converter'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
output_dir = 'outputs_v2'
os.makedirs(output_dir, exist_ok=True)
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
# Process the reference video
reference_video = VideoFileClip(video_file)
reference_audio = os.path.join(output_dir, "reference_audio.wav")
reference_video.audio.write_audiofile(reference_audio)
audio = AudioSegment.from_file(reference_audio)
resampled_audio = audio.set_frame_rate(48000)
resampled_audio.export(reference_audio, format="wav")
# Enhance the audio
model, df_state, _ = init_df()
audio, _ = load_audio(reference_audio, sr=df_state.sr())
enhanced = enhance(model, df_state, audio)
save_audio(reference_audio, enhanced, df_state.sr())
reference_speaker = reference_audio # This is the voice you want to clone
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
src_path = os.path.join(output_dir, "tmp.wav")
# Speed is adjustable
speed = 1.0
# Transcribe the original audio with timestamps
sttmodel = whisper.load_model("base")
sttresult = sttmodel.transcribe(reference_speaker, verbose=True)
# Print the original transcription
print(sttresult["text"])
print(sttresult["language"])
# Get the segments with start and end times
segments = sttresult['segments']
# Choose the target language for translation
language = 'EN_NEWEST'
match language_choice:
case 'en':
language = 'EN_NEWEST'
case 'es':
language = 'ES'
case 'fr':
language = 'FR'
case 'zh':
language = 'ZH'
case 'ja':
language = 'JP'
case 'ko':
language = 'KR'
case _:
language = 'EN_NEWEST'
# Translate the transcription segment by segment
def translate_segment(segment):
return segment["start"], segment["end"], ts.translate_text(query_text=segment["text"], translator="google", to_language=language_choice)
# Batch translation to reduce memory load
batch_size = 2
translation_segments = []
for i in range(0, len(segments), batch_size):
batch = segments[i:i + batch_size]
with ThreadPoolExecutor(max_workers=5) as executor:
batch_translations = list(executor.map(translate_segment, batch))
translation_segments.extend(batch_translations)
# Generate the translated audio for each segment
model = TTS(language=language, device=device)
speaker_ids = model.hps.data.spk2id
def generate_segment_audio(segment, speaker_id):
start, end, translated_text = segment
segment_path = os.path.join(output_dir, f'segment_{start}_{end}.wav')
model.tts_to_file(translated_text, speaker_id, segment_path, speed=speed)
return segment_path, start, end, translated_text
for speaker_key in speaker_ids.keys():
speaker_id = speaker_ids[speaker_key]
speaker_key = speaker_key.lower().replace('_', '-')
source_se = torch.load(f'checkpoints_v2/base_speakers/ses/{speaker_key}.pth', map_location=device)
segment_files = []
subtitle_entries = []
for segment in translation_segments:
segment_file, start, end, translated_text = generate_segment_audio(segment, speaker_id)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=segment_file,
src_se=source_se,
tgt_se=target_se,
output_path=segment_file,
message=encode_message)
segment_files.append((segment_file, start, end, translated_text))
# Combine the audio segments
combined_audio = AudioSegment.empty()
video_segments = []
previous_end = 0
subtitle_counter = 1
for segment_file, start, end, translated_text in segment_files:
segment_audio = AudioSegment.from_file(segment_file)
combined_audio += segment_audio
# Calculate the duration of the audio segment
audio_duration = len(segment_audio) / 1000.0
# Add the subtitle entry for this segment
subtitle_entries.append((subtitle_counter, previous_end, previous_end + audio_duration, translated_text))
subtitle_counter += 1
# Get the corresponding video segment and adjust its speed to match the audio duration
video_segment = (
ffmpeg
.input(reference_video.filename, ss=start, to=end)
.filter('setpts', f'PTS / {(end - start) / audio_duration}')
)
video_segments.append((video_segment, ffmpeg.input(segment_file)))
previous_end += audio_duration
save_path = os.path.join(output_dir, f'output_v2_{speaker_key}.wav')
combined_audio.export(save_path, format="wav")
# Combine video and audio segments using ffmpeg
video_and_audio_files = [item for sublist in video_segments for item in sublist]
joined = (
ffmpeg
.concat(*video_and_audio_files, v=1, a=1)
.node
)
final_video_path = os.path.join(output_dir, f'final_video_{speaker_key}.mp4')
try:
(
ffmpeg
.output(joined[0], joined[1], final_video_path, vcodec='libx264', acodec='aac')
.run(overwrite_output=True)
)
except ffmpeg.Error as e:
print('ffmpeg error:', e)
print(e.stderr.decode('utf-8'))
print(f"Final video without subtitles saved to: {final_video_path}")
# Generate subtitles file in SRT format
srt_path = os.path.join(output_dir, 'subtitles.srt')
with open(srt_path, 'w', encoding='utf-8') as srt_file:
for entry in subtitle_entries:
index, start, end, text = entry
start_hours, start_minutes = divmod(int(start), 3600)
start_minutes, start_seconds = divmod(start_minutes, 60)
start_milliseconds = int((start * 1000) % 1000)
end_hours, end_minutes = divmod(int(end), 3600)
end_minutes, end_seconds = divmod(end_minutes, 60)
end_milliseconds = int((end * 1000) % 1000)
srt_file.write(f"{index}\n")
srt_file.write(f"{start_hours:02}:{start_minutes:02}:{start_seconds:02},{start_milliseconds:03} --> "
f"{end_hours:02}:{end_minutes:02}:{end_seconds:02},{end_milliseconds:03}\n")
srt_file.write(f"{text}\n\n")
# Add subtitles to the video
final_video_with_subs_path = os.path.join(output_dir, f'final_video_with_subs_{speaker_key}.mp4')
try:
(
ffmpeg
.input(final_video_path)
.output(final_video_with_subs_path, vf=f"subtitles={srt_path}")
.run(overwrite_output=True)
)
except ffmpeg.Error as e:
print('ffmpeg error:', e)
print(e.stderr.decode('utf-8'))
print(f"Final video with subtitles saved to: {final_video_with_subs_path}")
return final_video_with_subs_path
# Define Gradio interface
def gradio_interface(video_file, language_choice):
return process_video(video_file, language_choice)
language_choices = ts.get_languages("google")["en"]
gr.Interface(
fn=gradio_interface,
inputs=[
gr.Video(label="Upload Video"),
gr.Dropdown(choices=language_choices, label="Choose Language for Translation")
],
outputs=gr.Video(label="Translated Video"),
title="Video Translation and Voice Cloning",
description="Upload a video, choose a language to translate the audio, and download the processed video with translated audio."
).launch()