Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
import gradio as gr
|
3 |
import librosa
|
4 |
import numpy as np
|
@@ -44,13 +43,7 @@ classifier = foreign_class(
|
|
44 |
)
|
45 |
|
46 |
def preprocess_audio(audio_file, apply_noise_reduction=False):
|
47 |
-
"""
|
48 |
-
Load and preprocess the audio file:
|
49 |
-
- Convert to 16kHz mono.
|
50 |
-
- Optionally apply noise reduction.
|
51 |
-
- Normalize the audio.
|
52 |
-
Saves the processed audio to a temporary file and returns its path.
|
53 |
-
"""
|
54 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
55 |
if apply_noise_reduction and NOISEREDUCE_AVAILABLE:
|
56 |
y = nr.reduce_noise(y=y, sr=sr)
|
@@ -62,19 +55,15 @@ def preprocess_audio(audio_file, apply_noise_reduction=False):
|
|
62 |
return temp_file.name
|
63 |
|
64 |
def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
65 |
-
"""
|
66 |
-
For longer audio files, split into overlapping segments, predict each segment,
|
67 |
-
and return the majority-voted emotion label.
|
68 |
-
"""
|
69 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
70 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
71 |
|
72 |
-
# If the audio is short, process it directly
|
73 |
if total_duration <= segment_duration:
|
74 |
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
75 |
_, _, _, label = classifier.classify_file(temp_file)
|
76 |
os.remove(temp_file)
|
77 |
-
return label
|
78 |
|
79 |
step = segment_duration - overlap
|
80 |
segments = []
|
@@ -91,7 +80,7 @@ def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duratio
|
|
91 |
for seg in segments:
|
92 |
temp_file = preprocess_audio(seg, apply_noise_reduction)
|
93 |
_, _, _, label = classifier.classify_file(temp_file)
|
94 |
-
predictions.append(label)
|
95 |
os.remove(temp_file)
|
96 |
os.remove(seg)
|
97 |
|
@@ -100,6 +89,7 @@ def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duratio
|
|
100 |
return most_common
|
101 |
|
102 |
def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
|
|
103 |
try:
|
104 |
if use_ensemble:
|
105 |
label = ensemble_prediction(audio_file, apply_noise_reduction, segment_duration, overlap)
|
@@ -109,19 +99,16 @@ def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False,
|
|
109 |
os.remove(temp_file)
|
110 |
|
111 |
if isinstance(result, tuple) and len(result) > 3:
|
112 |
-
label = result[3][0] # Extract the predicted label
|
113 |
else:
|
114 |
label = str(result) # Convert to string if unexpected format
|
115 |
|
116 |
-
return add_emoji_to_label(label.lower()) #
|
117 |
except Exception as e:
|
118 |
return f"Error processing file: {str(e)}"
|
119 |
|
120 |
-
|
121 |
def plot_waveform(audio_file):
|
122 |
-
"""
|
123 |
-
Generate and return a waveform plot image (as a PIL Image) for the given audio file.
|
124 |
-
"""
|
125 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
126 |
plt.figure(figsize=(10, 3))
|
127 |
librosa.display.waveshow(y, sr=sr)
|
@@ -130,15 +117,10 @@ def plot_waveform(audio_file):
|
|
130 |
plt.savefig(buf, format="png")
|
131 |
plt.close()
|
132 |
buf.seek(0)
|
133 |
-
|
134 |
-
image = Image.open(buf)
|
135 |
-
return image
|
136 |
|
137 |
def predict_and_plot(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap):
|
138 |
-
"""
|
139 |
-
Run emotion prediction and generate a waveform plot.
|
140 |
-
Returns a tuple: (emotion label with emoji, waveform image as a PIL Image).
|
141 |
-
"""
|
142 |
emotion = predict_emotion(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap)
|
143 |
waveform = plot_waveform(audio_file)
|
144 |
return emotion, waveform
|
@@ -147,7 +129,7 @@ def predict_and_plot(audio_file, use_ensemble, apply_noise_reduction, segment_du
|
|
147 |
with gr.Blocks(css=".gradio-container {background-color: #f7f7f7; font-family: Arial;}") as demo:
|
148 |
gr.Markdown("<h1 style='text-align: center;'>Enhanced Emotion Recognition 😊</h1>")
|
149 |
gr.Markdown(
|
150 |
-
"Upload an audio file and the model will predict the emotion using a wav2vec2 model fine-tuned on IEMOCAP data. "
|
151 |
"The prediction is accompanied by an emoji, and you can also view the audio's waveform. "
|
152 |
"Use the options below to adjust ensemble prediction and noise reduction settings."
|
153 |
)
|
@@ -163,7 +145,6 @@ with gr.Blocks(css=".gradio-container {background-color: #f7f7f7; font-family: A
|
|
163 |
overlap = gr.Slider(minimum=0.0, maximum=5.0, step=0.5, value=1.0, label="Segment Overlap (s)")
|
164 |
predict_button = gr.Button("Predict Emotion")
|
165 |
result_text = gr.Textbox(label="Predicted Emotion")
|
166 |
-
# Set type to "pil" since we are returning a PIL Image
|
167 |
waveform_image = gr.Image(label="Audio Waveform", type="pil")
|
168 |
|
169 |
predict_button.click(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import librosa
|
3 |
import numpy as np
|
|
|
43 |
)
|
44 |
|
45 |
def preprocess_audio(audio_file, apply_noise_reduction=False):
|
46 |
+
"""Load and preprocess the audio file: convert to 16kHz mono, optionally apply noise reduction, and normalize."""
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
48 |
if apply_noise_reduction and NOISEREDUCE_AVAILABLE:
|
49 |
y = nr.reduce_noise(y=y, sr=sr)
|
|
|
55 |
return temp_file.name
|
56 |
|
57 |
def ensemble_prediction(audio_file, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
58 |
+
"""Split longer audio files into overlapping segments, predict each segment, and return the majority-voted emotion label."""
|
|
|
|
|
|
|
59 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
60 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
61 |
|
|
|
62 |
if total_duration <= segment_duration:
|
63 |
temp_file = preprocess_audio(audio_file, apply_noise_reduction)
|
64 |
_, _, _, label = classifier.classify_file(temp_file)
|
65 |
os.remove(temp_file)
|
66 |
+
return label[0]
|
67 |
|
68 |
step = segment_duration - overlap
|
69 |
segments = []
|
|
|
80 |
for seg in segments:
|
81 |
temp_file = preprocess_audio(seg, apply_noise_reduction)
|
82 |
_, _, _, label = classifier.classify_file(temp_file)
|
83 |
+
predictions.append(label[0]) # Extract the predicted emotion
|
84 |
os.remove(temp_file)
|
85 |
os.remove(seg)
|
86 |
|
|
|
89 |
return most_common
|
90 |
|
91 |
def predict_emotion(audio_file, use_ensemble=False, apply_noise_reduction=False, segment_duration=3.0, overlap=1.0):
|
92 |
+
"""Predict emotion from an audio file and return the emotion with an emoji."""
|
93 |
try:
|
94 |
if use_ensemble:
|
95 |
label = ensemble_prediction(audio_file, apply_noise_reduction, segment_duration, overlap)
|
|
|
99 |
os.remove(temp_file)
|
100 |
|
101 |
if isinstance(result, tuple) and len(result) > 3:
|
102 |
+
label = result[3][0] # Extract the predicted emotion label
|
103 |
else:
|
104 |
label = str(result) # Convert to string if unexpected format
|
105 |
|
106 |
+
return add_emoji_to_label(label.lower()) # Format and add an emoji
|
107 |
except Exception as e:
|
108 |
return f"Error processing file: {str(e)}"
|
109 |
|
|
|
110 |
def plot_waveform(audio_file):
|
111 |
+
"""Generate and return a waveform plot image (as a PIL Image) for the given audio file."""
|
|
|
|
|
112 |
y, sr = librosa.load(audio_file, sr=16000, mono=True)
|
113 |
plt.figure(figsize=(10, 3))
|
114 |
librosa.display.waveshow(y, sr=sr)
|
|
|
117 |
plt.savefig(buf, format="png")
|
118 |
plt.close()
|
119 |
buf.seek(0)
|
120 |
+
return Image.open(buf)
|
|
|
|
|
121 |
|
122 |
def predict_and_plot(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap):
|
123 |
+
"""Run emotion prediction and generate a waveform plot."""
|
|
|
|
|
|
|
124 |
emotion = predict_emotion(audio_file, use_ensemble, apply_noise_reduction, segment_duration, overlap)
|
125 |
waveform = plot_waveform(audio_file)
|
126 |
return emotion, waveform
|
|
|
129 |
with gr.Blocks(css=".gradio-container {background-color: #f7f7f7; font-family: Arial;}") as demo:
|
130 |
gr.Markdown("<h1 style='text-align: center;'>Enhanced Emotion Recognition 😊</h1>")
|
131 |
gr.Markdown(
|
132 |
+
"Upload an audio file, and the model will predict the emotion using a wav2vec2 model fine-tuned on IEMOCAP data. "
|
133 |
"The prediction is accompanied by an emoji, and you can also view the audio's waveform. "
|
134 |
"Use the options below to adjust ensemble prediction and noise reduction settings."
|
135 |
)
|
|
|
145 |
overlap = gr.Slider(minimum=0.0, maximum=5.0, step=0.5, value=1.0, label="Segment Overlap (s)")
|
146 |
predict_button = gr.Button("Predict Emotion")
|
147 |
result_text = gr.Textbox(label="Predicted Emotion")
|
|
|
148 |
waveform_image = gr.Image(label="Audio Waveform", type="pil")
|
149 |
|
150 |
predict_button.click(
|