Spaces:
Runtime error
Runtime error
feat: sam inference example
Browse files- .gitignore +2 -0
- Makefile +14 -0
- README.md +15 -1
- models/sam_vit_h_4b8939.pth +3 -0
- requirements.txt +5 -0
- samples/bears.jpg +0 -0
- scripts/example.py +47 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.npy
|
2 |
+
mask.png
|
Makefile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PYTHON=3.9
|
2 |
+
BASENAME=$(shell basename $(CURDIR))
|
3 |
+
CURRENT_DIR = $(shell pwd)
|
4 |
+
|
5 |
+
env:
|
6 |
+
conda create -n $(BASENAME) -y python=$(PYTHON)
|
7 |
+
|
8 |
+
setup:
|
9 |
+
pip install -r requirements.txt
|
10 |
+
pip install git+https://github.com/facebookresearch/segment-anything.git
|
11 |
+
|
12 |
+
load-model:
|
13 |
+
mkdir -p models
|
14 |
+
curl -O https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth && mv sam_vit_h_4b8939.pth models/sam_vit_h_4b8939.pth
|
README.md
CHANGED
@@ -10,4 +10,18 @@ pinned: false
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
## Before you started
|
14 |
+
- requirements: Conda
|
15 |
+
```
|
16 |
+
make env
|
17 |
+
conda activate sam-inference
|
18 |
+
make setup
|
19 |
+
make load-model
|
20 |
+
|
21 |
+
```
|
22 |
+
|
23 |
+
## Example inference script
|
24 |
+
```
|
25 |
+
|
26 |
+
python example.py --image samples/bears.jpg
|
27 |
+
```
|
models/sam_vit_h_4b8939.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
3 |
+
size 2564550879
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
matplotlib
|
3 |
+
gradio
|
4 |
+
torch
|
5 |
+
torchvision
|
samples/bears.jpg
ADDED
![]() |
scripts/example.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from segment_anything import SamPredictor, sam_model_registry
|
5 |
+
|
6 |
+
# Argument parser
|
7 |
+
parser = argparse.ArgumentParser()
|
8 |
+
parser.add_argument("-i", "--image", required=True, help="Path to the image")
|
9 |
+
args = parser.parse_args()
|
10 |
+
|
11 |
+
# Set hyperparameters
|
12 |
+
sam_checkpoint = "./models/sam_vit_h_4b8939.pth"
|
13 |
+
model_type = "vit_h"
|
14 |
+
device = "cpu"
|
15 |
+
|
16 |
+
# Load model
|
17 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
18 |
+
sam.to(device=device)
|
19 |
+
predictor = SamPredictor(sam)
|
20 |
+
|
21 |
+
# Preprocessing the image
|
22 |
+
image = cv2.imread(args.image)
|
23 |
+
predictor.set_image(image)
|
24 |
+
|
25 |
+
# SAM Encoder for embedding
|
26 |
+
embedding = predictor.get_image_embedding()
|
27 |
+
np.save("models/embedding.npy", embedding)
|
28 |
+
|
29 |
+
|
30 |
+
# SAM Decoder for segmentation
|
31 |
+
input_point = np.array([[1300, 950]])
|
32 |
+
input_label = np.array([1])
|
33 |
+
mask, score, logit = predictor.predict(
|
34 |
+
point_coords=input_point,
|
35 |
+
point_labels=input_label,
|
36 |
+
multimask_output=False,
|
37 |
+
)
|
38 |
+
|
39 |
+
# Save output
|
40 |
+
h, w = mask.shape[-2:]
|
41 |
+
mask = mask.reshape(h, w, 1)
|
42 |
+
|
43 |
+
## Mask has a 255 or 0 value
|
44 |
+
mask = (mask * 255).astype(np.uint8)
|
45 |
+
|
46 |
+
## Save mask image
|
47 |
+
cv2.imwrite("mask.png", mask[:, :])
|