Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,44 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import gradio as gr
|
4 |
-
from kaggle_secrets import UserSecretsClient
|
5 |
-
from transformers import AutoProcessor, AutoTokenizer, AutoModelForImageTextToText
|
6 |
-
from sklearn.model_selection import train_test_split
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
HF_TOKEN
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
model = AutoModelForImageTextToText.from_pretrained(
|
19 |
MODEL_ID,
|
20 |
trust_remote_code=True,
|
21 |
-
|
22 |
load_in_8bit=True,
|
23 |
device_map="auto"
|
24 |
)
|
25 |
device = next(model.parameters()).device
|
26 |
|
27 |
-
|
28 |
-
def to_soap(text):
|
29 |
inputs = processor.apply_chat_template(
|
30 |
[
|
31 |
{"role":"system","content":[{"type":"text","text":"You are a medical AI assistant."}]},
|
@@ -40,28 +53,29 @@ def generate_all_notes():
|
|
40 |
**inputs,
|
41 |
max_new_tokens=400,
|
42 |
do_sample=True,
|
43 |
-
temperature=0.1,
|
44 |
top_p=0.95,
|
|
|
45 |
pad_token_id=processor.tokenizer.eos_token_id
|
46 |
)
|
47 |
-
|
|
|
48 |
|
49 |
-
#
|
50 |
docs, gts = [], []
|
51 |
-
for i in range(
|
52 |
doc = to_soap("Generate a realistic, concise doctor's progress note for a single patient encounter.")
|
53 |
docs.append(doc)
|
54 |
gts.append(to_soap(doc))
|
55 |
-
if
|
56 |
torch.cuda.empty_cache()
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
train_df, test_df = train_test_split(
|
61 |
|
62 |
os.makedirs("outputs", exist_ok=True)
|
63 |
|
64 |
-
#
|
65 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
66 |
inf = train_df.reset_index(drop=True).copy()
|
67 |
inf["id"] = inf.index + 1
|
@@ -70,24 +84,25 @@ def generate_all_notes():
|
|
70 |
"outputs/inference.tsv", sep="\t", index=False
|
71 |
)
|
72 |
|
73 |
-
#
|
74 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
75 |
pd.DataFrame({
|
76 |
-
"id":
|
77 |
"predicted_soap": test_preds
|
78 |
}).to_csv("outputs/eval.csv", index=False)
|
79 |
|
80 |
return (
|
81 |
"✅ Done!\n"
|
82 |
-
f"
|
83 |
-
f"
|
84 |
)
|
85 |
|
|
|
86 |
with gr.Blocks() as demo:
|
87 |
-
gr.Markdown("## Gemma‑3n SOAP Generator")
|
88 |
-
btn = gr.Button("Generate 100 →
|
89 |
-
|
90 |
-
btn.click(fn=
|
91 |
|
92 |
-
if __name__=="__main__":
|
93 |
demo.launch()
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import os
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
|
|
|
|
|
|
6 |
import torch
|
7 |
+
from transformers import (
|
8 |
+
AutoProcessor,
|
9 |
+
AutoTokenizer,
|
10 |
+
AutoModelForImageTextToText
|
11 |
+
)
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
|
14 |
+
# 1) Retrieve your HF_TOKEN from environment (set in Space Settings → Secrets)
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
if not HF_TOKEN:
|
17 |
+
raise RuntimeError("Missing HF_TOKEN env var! Please add it in your Space settings → Secrets.")
|
18 |
|
19 |
+
MODEL_ID = "google/gemma-3n-e2b-it"
|
|
|
|
|
20 |
|
21 |
+
# 2) Eagerly load the small bits (processor & tokenizer) so the UI starts fast
|
22 |
+
processor = AutoProcessor.from_pretrained(
|
23 |
+
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
24 |
+
)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
+
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
27 |
+
)
|
28 |
+
|
29 |
+
def generate_all_and_split():
|
30 |
+
"""Called when the user clicks the button—loads full model, generates & saves files."""
|
31 |
+
# a) Lazy‑load the 8‑bit quantized model (heavy)
|
32 |
model = AutoModelForImageTextToText.from_pretrained(
|
33 |
MODEL_ID,
|
34 |
trust_remote_code=True,
|
35 |
+
token=HF_TOKEN,
|
36 |
load_in_8bit=True,
|
37 |
device_map="auto"
|
38 |
)
|
39 |
device = next(model.parameters()).device
|
40 |
|
41 |
+
def to_soap(text: str) -> str:
|
|
|
42 |
inputs = processor.apply_chat_template(
|
43 |
[
|
44 |
{"role":"system","content":[{"type":"text","text":"You are a medical AI assistant."}]},
|
|
|
53 |
**inputs,
|
54 |
max_new_tokens=400,
|
55 |
do_sample=True,
|
|
|
56 |
top_p=0.95,
|
57 |
+
temperature=0.1,
|
58 |
pad_token_id=processor.tokenizer.eos_token_id
|
59 |
)
|
60 |
+
prompt_len = inputs["input_ids"].shape[-1]
|
61 |
+
return processor.batch_decode(out[:, prompt_len:], skip_special_tokens=True)[0].strip()
|
62 |
|
63 |
+
# b) Generate 100 doc_notes + ground_truth SOAPs
|
64 |
docs, gts = [], []
|
65 |
+
for i in range(1, 101):
|
66 |
doc = to_soap("Generate a realistic, concise doctor's progress note for a single patient encounter.")
|
67 |
docs.append(doc)
|
68 |
gts.append(to_soap(doc))
|
69 |
+
if i % 20 == 0:
|
70 |
torch.cuda.empty_cache()
|
71 |
|
72 |
+
# c) Split 70/30
|
73 |
+
df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
74 |
+
train_df, test_df = train_test_split(df, test_size=0.3, random_state=42)
|
75 |
|
76 |
os.makedirs("outputs", exist_ok=True)
|
77 |
|
78 |
+
# d) Inference on train → inference.tsv
|
79 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
80 |
inf = train_df.reset_index(drop=True).copy()
|
81 |
inf["id"] = inf.index + 1
|
|
|
84 |
"outputs/inference.tsv", sep="\t", index=False
|
85 |
)
|
86 |
|
87 |
+
# e) Inference on test → eval.csv
|
88 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
89 |
pd.DataFrame({
|
90 |
+
"id": range(1, len(test_preds)+1),
|
91 |
"predicted_soap": test_preds
|
92 |
}).to_csv("outputs/eval.csv", index=False)
|
93 |
|
94 |
return (
|
95 |
"✅ Done!\n"
|
96 |
+
f"• outputs/inference.tsv (70 rows with id, GT, pred)\n"
|
97 |
+
f"• outputs/eval.csv (30 rows with id, pred)"
|
98 |
)
|
99 |
|
100 |
+
# 3) Gradio UI—instant startup
|
101 |
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("## Gemma‑3n SOAP Generator 🩺")
|
103 |
+
btn = gr.Button("Generate & Save 100 Notes → 70/30 Split → inference & eval")
|
104 |
+
status = gr.Textbox(interactive=False, label="Status")
|
105 |
+
btn.click(fn=generate_all_and_split, inputs=None, outputs=status)
|
106 |
|
107 |
+
if __name__ == "__main__":
|
108 |
demo.launch()
|