Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,23 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import os
|
4 |
import pandas as pd
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
from transformers import
|
|
|
|
|
|
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
|
10 |
-
# 1) Configuration
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
if not HF_TOKEN:
|
13 |
-
raise RuntimeError(
|
|
|
|
|
14 |
|
15 |
MODEL_ID = "google/gemma-3n-e2b-it"
|
16 |
|
17 |
-
#
|
18 |
processor = AutoProcessor.from_pretrained(
|
19 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
20 |
)
|
@@ -23,25 +26,25 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
23 |
)
|
24 |
|
25 |
def generate_and_export():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
device = next(model.parameters()).device
|
38 |
|
39 |
def to_soap(text: str) -> str:
|
40 |
-
# wrap the chat‐template + generate call
|
41 |
inputs = processor.apply_chat_template(
|
42 |
[
|
43 |
-
{"role":"system","content":[{"type":"text","text":"You are a medical AI assistant."}]},
|
44 |
-
{"role":"user",
|
45 |
],
|
46 |
add_generation_prompt=True,
|
47 |
tokenize=True,
|
@@ -54,60 +57,63 @@ def generate_and_export():
|
|
54 |
do_sample=True,
|
55 |
top_p=0.95,
|
56 |
temperature=0.1,
|
57 |
-
pad_token_id=processor.tokenizer.eos_token_id
|
|
|
58 |
)
|
59 |
-
# strip off prompt tokens
|
60 |
prompt_len = inputs["input_ids"].shape[-1]
|
61 |
-
return processor.batch_decode(
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
docs, gts = [], []
|
65 |
for i in range(1, 101):
|
66 |
-
doc = to_soap(
|
|
|
|
|
67 |
docs.append(doc)
|
68 |
gts.append(to_soap(doc))
|
69 |
if i % 20 == 0:
|
70 |
torch.cuda.empty_cache()
|
71 |
|
72 |
-
#
|
73 |
df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
74 |
train_df, test_df = train_test_split(df, test_size=0.3, random_state=42)
|
75 |
|
76 |
-
#
|
77 |
os.makedirs("outputs", exist_ok=True)
|
78 |
|
79 |
-
#
|
80 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
81 |
inf = train_df.reset_index(drop=True).copy()
|
82 |
-
inf["id"]
|
83 |
inf["predicted_soap"] = train_preds
|
84 |
inf[["id","ground_truth_soap","predicted_soap"]].to_csv(
|
85 |
"outputs/inference.tsv", sep="\t", index=False
|
86 |
)
|
87 |
|
88 |
-
#
|
89 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
90 |
pd.DataFrame({
|
91 |
-
"id":
|
92 |
"predicted_soap": test_preds
|
93 |
}).to_csv("outputs/eval.csv", index=False)
|
94 |
|
95 |
-
# return status + file paths for download
|
96 |
return (
|
97 |
-
"✅
|
98 |
"outputs/inference.tsv",
|
99 |
"outputs/eval.csv"
|
100 |
)
|
101 |
|
102 |
-
#
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("# Gemma‑3n SOAP Generator 🩺")
|
105 |
-
|
106 |
-
status
|
107 |
-
inf_file
|
108 |
-
eval_file
|
109 |
|
110 |
-
|
111 |
fn=generate_and_export,
|
112 |
inputs=None,
|
113 |
outputs=[status, inf_file, eval_file]
|
|
|
|
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
from transformers import (
|
6 |
+
AutoProcessor,
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModelForImageTextToText
|
9 |
+
)
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
|
|
|
12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
14 |
+
raise RuntimeError(
|
15 |
+
"Missing HF_TOKEN in env vars – add it under Settings → Secrets"
|
16 |
+
)
|
17 |
|
18 |
MODEL_ID = "google/gemma-3n-e2b-it"
|
19 |
|
20 |
+
# Load processor & tokenizer at top level for fast startup
|
21 |
processor = AutoProcessor.from_pretrained(
|
22 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
23 |
)
|
|
|
26 |
)
|
27 |
|
28 |
def generate_and_export():
|
29 |
+
"""
|
30 |
+
On button click: load full model, generate 100 notes,
|
31 |
+
split 70/30, run inference & eval, save files, return download links.
|
32 |
+
"""
|
33 |
+
# Load the heavy model here
|
34 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
35 |
+
MODEL_ID,
|
36 |
+
trust_remote_code=True,
|
37 |
+
token=HF_TOKEN,
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
device_map="auto"
|
40 |
+
)
|
41 |
device = next(model.parameters()).device
|
42 |
|
43 |
def to_soap(text: str) -> str:
|
|
|
44 |
inputs = processor.apply_chat_template(
|
45 |
[
|
46 |
+
{"role": "system", "content":[{"type":"text","text":"You are a medical AI assistant."}]},
|
47 |
+
{"role": "user", "content":[{"type":"text","text":text}]}
|
48 |
],
|
49 |
add_generation_prompt=True,
|
50 |
tokenize=True,
|
|
|
57 |
do_sample=True,
|
58 |
top_p=0.95,
|
59 |
temperature=0.1,
|
60 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
61 |
+
use_cache=False
|
62 |
)
|
|
|
63 |
prompt_len = inputs["input_ids"].shape[-1]
|
64 |
+
return processor.batch_decode(
|
65 |
+
out[:, prompt_len:], skip_special_tokens=True
|
66 |
+
)[0].strip()
|
67 |
|
68 |
+
# Generate 100 docs + GTs
|
69 |
docs, gts = [], []
|
70 |
for i in range(1, 101):
|
71 |
+
doc = to_soap(
|
72 |
+
"Generate a realistic, concise doctor's progress note for a single patient encounter."
|
73 |
+
)
|
74 |
docs.append(doc)
|
75 |
gts.append(to_soap(doc))
|
76 |
if i % 20 == 0:
|
77 |
torch.cuda.empty_cache()
|
78 |
|
79 |
+
# Split 70/30
|
80 |
df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
81 |
train_df, test_df = train_test_split(df, test_size=0.3, random_state=42)
|
82 |
|
83 |
+
# Ensure outputs dir
|
84 |
os.makedirs("outputs", exist_ok=True)
|
85 |
|
86 |
+
# Inference on train → inference.tsv
|
87 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
88 |
inf = train_df.reset_index(drop=True).copy()
|
89 |
+
inf["id"] = inf.index + 1
|
90 |
inf["predicted_soap"] = train_preds
|
91 |
inf[["id","ground_truth_soap","predicted_soap"]].to_csv(
|
92 |
"outputs/inference.tsv", sep="\t", index=False
|
93 |
)
|
94 |
|
95 |
+
# Inference on test → eval.csv
|
96 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
97 |
pd.DataFrame({
|
98 |
+
"id": range(1, len(test_preds) + 1),
|
99 |
"predicted_soap": test_preds
|
100 |
}).to_csv("outputs/eval.csv", index=False)
|
101 |
|
|
|
102 |
return (
|
103 |
+
"✅ Done!",
|
104 |
"outputs/inference.tsv",
|
105 |
"outputs/eval.csv"
|
106 |
)
|
107 |
|
108 |
+
# Build Gradio interface (starts immediately)
|
109 |
with gr.Blocks() as demo:
|
110 |
gr.Markdown("# Gemma‑3n SOAP Generator 🩺")
|
111 |
+
btn = gr.Button("Generate & Export 100 Notes")
|
112 |
+
status = gr.Textbox(interactive=False, label="Status")
|
113 |
+
inf_file = gr.File(label="Download inference.tsv")
|
114 |
+
eval_file = gr.File(label="Download eval.csv")
|
115 |
|
116 |
+
btn.click(
|
117 |
fn=generate_and_export,
|
118 |
inputs=None,
|
119 |
outputs=[status, inf_file, eval_file]
|