Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from transformers import (
|
|
13 |
)
|
14 |
from sklearn.model_selection import train_test_split
|
15 |
|
16 |
-
# βββ Silence
|
17 |
logging.set_verbosity_error()
|
18 |
|
19 |
# βββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
@@ -22,7 +22,7 @@ if not HF_TOKEN:
|
|
22 |
raise RuntimeError("Missing HF_TOKEN in env vars β set it under Space Settings β Secrets")
|
23 |
MODEL_ID = "google/gemma-3n-e2b-it"
|
24 |
|
25 |
-
# βββ Fast startup: load only
|
26 |
processor = AutoProcessor.from_pretrained(
|
27 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
28 |
)
|
@@ -30,10 +30,10 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
30 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
31 |
)
|
32 |
|
33 |
-
# βββ Heavy work
|
34 |
def generate_and_export():
|
35 |
try:
|
36 |
-
# 1) Lazy
|
37 |
model = AutoModelForImageTextToText.from_pretrained(
|
38 |
MODEL_ID,
|
39 |
trust_remote_code=True,
|
@@ -43,7 +43,7 @@ def generate_and_export():
|
|
43 |
)
|
44 |
device = next(model.parameters()).device
|
45 |
|
46 |
-
# 2)
|
47 |
def to_soap(text: str) -> str:
|
48 |
inputs = processor.apply_chat_template(
|
49 |
[
|
@@ -62,30 +62,29 @@ def generate_and_export():
|
|
62 |
top_p=0.95,
|
63 |
temperature=0.1,
|
64 |
pad_token_id=processor.tokenizer.eos_token_id,
|
65 |
-
use_cache=False
|
66 |
)
|
67 |
prompt_len = inputs["input_ids"].shape[-1]
|
68 |
return processor.batch_decode(
|
69 |
out[:, prompt_len:], skip_special_tokens=True
|
70 |
)[0].strip()
|
71 |
|
72 |
-
# 3) Generate
|
73 |
docs, gts = [], []
|
74 |
-
for i in range(1,
|
75 |
doc = to_soap("Generate a realistic, concise doctor's progress note for a single patient encounter.")
|
76 |
docs.append(doc)
|
77 |
gts.append(to_soap(doc))
|
78 |
-
if i %
|
79 |
torch.cuda.empty_cache()
|
80 |
|
81 |
-
# 4)
|
82 |
df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
83 |
-
train_df, test_df = train_test_split(df, test_size=
|
84 |
|
85 |
-
# ensure outputs folder
|
86 |
os.makedirs("outputs", exist_ok=True)
|
87 |
|
88 |
-
# 5)
|
89 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
90 |
inf = train_df.reset_index(drop=True).copy()
|
91 |
inf["id"] = inf.index + 1
|
@@ -94,30 +93,28 @@ def generate_and_export():
|
|
94 |
"outputs/inference.tsv", sep="\t", index=False
|
95 |
)
|
96 |
|
97 |
-
# 6)
|
98 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
99 |
pd.DataFrame({
|
100 |
-
"id": range(1, len(test_preds)+1),
|
101 |
"predicted_soap": test_preds
|
102 |
}).to_csv("outputs/eval.csv", index=False)
|
103 |
|
104 |
-
# 7)
|
105 |
return (
|
106 |
-
"β
|
107 |
"outputs/inference.tsv",
|
108 |
"outputs/eval.csv"
|
109 |
)
|
110 |
|
111 |
except Exception as e:
|
112 |
-
# Print full traceback to the Space logs
|
113 |
traceback.print_exc()
|
114 |
-
# Return the error message to the UI
|
115 |
return (f"β Error: {e}", None, None)
|
116 |
|
117 |
# βββ Gradio UI ββββββββββββββββββοΏ½οΏ½ββββββββββββββββββββββββββββββββββββββββββββββ
|
118 |
with gr.Blocks() as demo:
|
119 |
gr.Markdown("# Gemmaβ3n SOAP Generator π©Ί")
|
120 |
-
btn = gr.Button("Generate & Export
|
121 |
status = gr.Textbox(interactive=False, label="Status")
|
122 |
inf_file = gr.File(label="Download inference.tsv")
|
123 |
eval_file= gr.File(label="Download eval.csv")
|
|
|
13 |
)
|
14 |
from sklearn.model_selection import train_test_split
|
15 |
|
16 |
+
# βββ Silence irrelevant warnings βββββββββββββββββββββββββββββββββββββββββββββββ
|
17 |
logging.set_verbosity_error()
|
18 |
|
19 |
# βββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
22 |
raise RuntimeError("Missing HF_TOKEN in env vars β set it under Space Settings β Secrets")
|
23 |
MODEL_ID = "google/gemma-3n-e2b-it"
|
24 |
|
25 |
+
# βββ Fast startup: load only processor & tokenizer βββββββββββββββββββββββββββββ
|
26 |
processor = AutoProcessor.from_pretrained(
|
27 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
28 |
)
|
|
|
30 |
MODEL_ID, trust_remote_code=True, token=HF_TOKEN
|
31 |
)
|
32 |
|
33 |
+
# βββ Heavy work runs on button click βββββββββββββββββββββββββββββββββββββββββββ
|
34 |
def generate_and_export():
|
35 |
try:
|
36 |
+
# 1) Lazyβload the full FP16 model
|
37 |
model = AutoModelForImageTextToText.from_pretrained(
|
38 |
MODEL_ID,
|
39 |
trust_remote_code=True,
|
|
|
43 |
)
|
44 |
device = next(model.parameters()).device
|
45 |
|
46 |
+
# 2) TextβSOAP helper
|
47 |
def to_soap(text: str) -> str:
|
48 |
inputs = processor.apply_chat_template(
|
49 |
[
|
|
|
62 |
top_p=0.95,
|
63 |
temperature=0.1,
|
64 |
pad_token_id=processor.tokenizer.eos_token_id,
|
65 |
+
use_cache=False
|
66 |
)
|
67 |
prompt_len = inputs["input_ids"].shape[-1]
|
68 |
return processor.batch_decode(
|
69 |
out[:, prompt_len:], skip_special_tokens=True
|
70 |
)[0].strip()
|
71 |
|
72 |
+
# 3) Generate 20 doc notes + ground truths
|
73 |
docs, gts = [], []
|
74 |
+
for i in range(1, 21):
|
75 |
doc = to_soap("Generate a realistic, concise doctor's progress note for a single patient encounter.")
|
76 |
docs.append(doc)
|
77 |
gts.append(to_soap(doc))
|
78 |
+
if i % 5 == 0:
|
79 |
torch.cuda.empty_cache()
|
80 |
|
81 |
+
# 4) Split into 15 train / 5 test
|
82 |
df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
83 |
+
train_df, test_df = train_test_split(df, test_size=5, random_state=42)
|
84 |
|
|
|
85 |
os.makedirs("outputs", exist_ok=True)
|
86 |
|
87 |
+
# 5) Inference on train split β outputs/inference.tsv
|
88 |
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
89 |
inf = train_df.reset_index(drop=True).copy()
|
90 |
inf["id"] = inf.index + 1
|
|
|
93 |
"outputs/inference.tsv", sep="\t", index=False
|
94 |
)
|
95 |
|
96 |
+
# 6) Inference on test split β outputs/eval.csv
|
97 |
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
98 |
pd.DataFrame({
|
99 |
+
"id": range(1, len(test_preds) + 1),
|
100 |
"predicted_soap": test_preds
|
101 |
}).to_csv("outputs/eval.csv", index=False)
|
102 |
|
103 |
+
# 7) Return status + file paths for download
|
104 |
return (
|
105 |
+
"β
Done with 20 notes (15 train / 5 test)!",
|
106 |
"outputs/inference.tsv",
|
107 |
"outputs/eval.csv"
|
108 |
)
|
109 |
|
110 |
except Exception as e:
|
|
|
111 |
traceback.print_exc()
|
|
|
112 |
return (f"β Error: {e}", None, None)
|
113 |
|
114 |
# βββ Gradio UI ββββββββββββββββββοΏ½οΏ½ββββββββββββββββββββββββββββββββββββββββββββββ
|
115 |
with gr.Blocks() as demo:
|
116 |
gr.Markdown("# Gemmaβ3n SOAP Generator π©Ί")
|
117 |
+
btn = gr.Button("Generate & Export 20 Notes")
|
118 |
status = gr.Textbox(interactive=False, label="Status")
|
119 |
inf_file = gr.File(label="Download inference.tsv")
|
120 |
eval_file= gr.File(label="Download eval.csv")
|